Forgot password?
 Create new account
View 138|Reply 2

[几何] 曲线的有理参数化

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-15 18:20:12 |Read mode
Last edited by hbghlyj at 2025-1-16 10:22:00en.wikipedia.org/wiki/Rational_variety#L%C3%BCroth%27s_theorem
Lüroth's theorem
J. Lüroth 关于有理曲线的定理的证明 Beweis eines Satzes über rationale Curven 发布:1875 年 6 月
Rational Function Decomposition - Cornell eCommons
The theory of ruled surfaces》第4页$\dagger$注脚:


如果一个曲线具有参数化$(x_0,\dots,x_n)=(f_0(t),\dots,f_n(t))$,其中$f_0(t),\dots,f_n(t)$均为有理函数(即两个多项式之商),
则我们可以将该曲线重新参数化为$(x_0,\dots,x_n)=(g_0(s),\dots,g_n(s))$,其中$g_0(s),\dots,g_n(s)$均为有理函数,且$s$为$t$的有理函数,且$s$为坐标$x_0,\dots,x_n$的有理函数(因此曲线上一点$x_0,\dots,x_n$对应于唯一的参数$s$)

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-15 18:27:35
例子,参数曲线$(x_0,x_1,x_2)=(1,t^{70},t^{30}+1)$,可重新参数化为$(1,s^7,s^3+1)$,使$s$可表为$t$的有理函数$s=t^{10}$,且$s$可表为坐标$x_0,x_1,x_2$的有理函数:$s=x_0x_1/(x_2-x_0)^2$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-16 02:11:13

Lüroth原文中的例子:

设参数曲线为\[
x=\frac{f(\lambda)}{\psi(\lambda)}, \quad y=\frac{\varphi(\lambda)}{\psi(\lambda)}
\]

$f(\lambda )\text{:=}\left(\lambda ^2+1\right)^2$
$\psi (\lambda )\text{:=}\lambda ^4+3 \lambda ^2+1$
$\phi (\lambda )\text{:=}\lambda  \left(\lambda ^2+1\right)$
  1. f[\[Lambda]_]:=(\[Lambda]^2+1)^2;
  2. \[Phi][\[Lambda]_]:=\[Lambda](\[Lambda]^2+1);
  3. \[Psi][\[Lambda]_]:=\[Lambda]^4+3\[Lambda]^2+1;
Copy the Code

设$
\Psi\left(\lambda, \lambda_1\right)$为$f(\lambda ) \psi (\lambda_1)-f(\lambda_1) \psi (\lambda )$与$\phi (\lambda ) \psi (\lambda_1)-\psi (\lambda ) \phi (\lambda_1)$的最大公因式:\[\Psi\left(\lambda, \lambda_1\right)
=\lambda^2 \lambda_1-\lambda\left(\lambda_1^2+1\right)+\lambda_1
\]
  1. PolynomialGCD[f[\[Lambda]]\[Psi][\[Lambda]1]-f[\[Lambda]1]\[Psi][\[Lambda]],\[Phi][\[Lambda]]\[Psi][\[Lambda]1]-\[Phi][\[Lambda]1]\[Psi][\[Lambda]]]
Copy the Code

将$\Psi(\lambda,\lambda_1)$整理为$\lambda$的多项式,设其系数为$\varphi_0(\lambda_1),\dots,\varphi_n(\lambda_1)$:\[
\Psi(\lambda,\lambda_1)=\varphi_0\left(\lambda_1\right) \lambda^n+\varphi_1\left(\lambda_1\right) \lambda^{n-1}+\cdots+\varphi_n\left(\lambda_1\right)
\]
这里$n=2,$$$\varphi_0\left(\lambda_1\right)=\lambda_1,\quad\varphi_1\left(\lambda_1\right)=-\left(\lambda_1^2+1\right),\quad\varphi_2\left(\lambda_1\right)=\lambda_1$$
设$
\frac{\varphi_i(\lambda)}{\varphi_k(\lambda)}=\mu_{i k}
$是这些系数之比:
\[
\mu_{10}=-\frac{\lambda^2+1}{\lambda}, \quad \mu_{20}=1, \quad \mu_{21}=-\frac{\lambda}{\lambda^2+1},
\]
那么$x,y$必可表示为$\mu_{ik}$的有理函数
\[
x=\frac{1}{\mu_{21}^2+1}, \quad y=\frac{-\mu_{21}}{\mu_{21}^2+1} .
\]
且$\mu_{ik}$必可表示为$x,y$的有理函数
$$\mu_{10}=-x/y,\quad\mu_{20}=1,\quad\mu_{21}=-y/x$$
这么神奇
Screenshot 2025-01-15 181043.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list