Forgot password?
 Create new account
View 212|Reply 3

[函数] 来自讨论组群:$\frac{\sin x}x+\left(\frac{\sin x}x\right)^2-\cos x\geqslant1$

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2025-1-25 11:44:15 |Read mode
生如夏花 1-24 16:48
$x\in(0,\pi]$,求证
\[\frac{\sin x}x+\left(\frac{\sin x}x\right)^2-\cos x\geqslant1.\]

证明:对前两项用均值,可知只需证明更强式
\[2\sqrt{\left(\frac{\sin x}x\right)^3}\geqslant1+\cos x=2\cos^2\frac x2,\]

\[\left(\frac{\sin x}x\right)^3\geqslant\cos^4\frac x2,\]
令 $x=2y$,上式化为
\[\left(\frac{2\sin y\cos y}{2y}\right)^3\geqslant\cos^4y,\]

\[\sin^3y\geqslant y^3\cos y,\]
(这就是老题了)令
\[f(y)=\frac{\sin y}{\sqrt[3]{\cos y}}-y,\quad y\in\left(0,\frac\pi2\right),\]
求导化简得
\[f'(y)=\frac{2\cos^2y+1}{3\sqrt[3]{\cos^4y}}-1,\]
由均值有 $\cos^2y+\cos^2y+1\geqslant3\sqrt[3]{\cos^4y}$,所以 $f'(y)\geqslant0$,得 $f(y)>f(0)=0$,即得证。


“生如夏花”的证法:
F1C32E954DB9DA1B4EFF9C11A777DAAB.jpg

4

Threads

30

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted at 2025-1-25 17:36:00
利用柯西不等式的积分形式即可证明:
$$\begin{aligned}
{\rm LHS}-{\rm RHS}
&=\dfrac{(x+\sin x)\sin x}{x^2}-(1+\cos x)\\
&=\dfrac{1+\cos x}{x^2}\left[(x+\sin x)\tan\dfrac x2-x^2\right]\\
&=\dfrac{1+\cos x}{x^2}\left[\left(\int_0^x2\cos^2\frac t2{\rm d}t\right)\left(\int_0^x\dfrac{{\rm d}t}{2\cos^2\frac t2}\right)-x^2\right]\\
&\geqslant 0.
\end{aligned}$$

Comment

🐮🍺!  Posted at 2025-1-25 17:44

Rate

Number of participants 1威望 +1 Collapse Reason
kuing + 1 好强的注意力!

View Rating Log

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2025-1-25 18:12:11
噢,那就可以仿楼上证明 1# 加强后要证的 `\sin^3y\geqslant y^3\cos y`,由 holder 的积分形式有
\[\left(\int_0^y\cos t\rmd t\right)^2\left(\int_0^y\frac{\rmd t}{\cos^2t}\right)\geqslant\left(\int_0^y1\rmd t\right)^3,\]
即 `\sin^2y\tan y\geqslant y^3`,即 `\sin^3y\geqslant y^3\cos y`。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list