Forgot password?
 Create new account
View 98|Reply 2

[函数] 坐标变换下的不变量多项式

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2025-2-15 17:40:16 |Read mode
在90°旋转$(x,y)\mapsto(-y,x)$下不变的多项式可以表为$x^2+y^2, x^3 y-x y^3, x^2 y^2$的多项式。如何证明?

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-15 17:55:02
等价的表述:
满足$f(x,y)=f(-y,x)$的多项式$f$都可以表为$g(x^2+y^2, x^3 y-x y^3, x^2 y^2)$,$g$为一个多项式。如何证明?

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-15 18:00:35
迭代周期为4:$(x,y)\mapsto(-y,x)\mapsto(-x,-y)\mapsto(y,-x)\mapsto(x,y)$
这是否意味着$x^2+y^2, x^3 y-x y^3, x^2 y^2$中的度数最大为4

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list