Forgot password?
 Register account
View 276|Reply 1

[几何] 曲线的二重切线数$\frac{n}{2}(n-2)(n^2-9)$

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-2-17 04:58 |Read mode
$n$次曲线的最多的二重切线数$=\frac{n}{2}(n-2)(n^2-9)$,如何证明

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-24 06:54
github.com/jmokland/schubert/blob/master/schu … t/src/schubertmanual
proj(2,h,all):             # the dual projective plane
proj(2,j,all):             # the projective plane
bundlesection(C,o(d*j)):   # define a plane curve of degree d
morphism(f,C,Ph,[(d-1)*j]):# the Gauss map to the dual plane
multiplepoint(f,2)/2:      # double points are bitangents or flexes
                           # correct for flexes.  Flexes can of 
                           # course be calculated automatically.
bitangents:=expand(integral(C,%)-(3*d*(d-2)));
                                   4    3        2
                bitangents := 1/2 d  - d  - 9/2 d  + 9 d

subs(d=4,%);
                                   28
4次曲线最多有28条二重切线

Mobile version|Discuz Math Forum

2025-6-5 19:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit