固定 $g \in G$,
则 $\rho_g$ 是可对角化的。因此选择 $V$ 的基 $\left\{v_1, v_2, \ldots, v_n\right\}$ 使得
\[
\rho_g\left(v_i\right)=\lambda_i v_i \quad \forall 1 \leq i \leq n
\]
因此,
\[
\chi(g)=\sum_{i=1}^n \lambda_i \text { 并且 } \chi\left(g^2\right)=\sum_{i=1}^n \lambda_i^2
\]
如果 $w_{i, j}=v_i \otimes v_j+v_j \otimes v_i$,则
\[
\rho_S(g)\left(w_{i, j}\right)=\rho_g\left(v_i\right) \otimes \rho_g\left(v_j\right)+\rho_g\left(v_j\right) \otimes \rho_g\left(v_i\right)=\lambda_i \lambda_j w_{i, j}
\]
类似地,取 $t_{i, j}=v_i \otimes v_j-v_j \otimes v_i$,则
\[
\rho_A(g)\left(t_{i, j}\right)=\lambda_i \lambda_j t_{i, j}
\]
因此,
\[
\begin{aligned}
\chi_S(g) & =\sum_{1 \leq i \leq j \leq n} \lambda_i \lambda_j \\
\chi_A(g) & =\sum_{1 \leq i<j \leq n} \lambda_i \lambda_j \\
\Rightarrow \chi_S(g) & =\sum_{i=1}^n \lambda_i^2+\chi_A(g) \\
& =\chi\left(g^2\right)+\chi_A(g) \\
\Rightarrow \chi\left(g^2\right) & =\chi_S(g)-\chi_A(g)\qquad(*)
\end{aligned}
\]
另外,
\[
\begin{aligned}
\chi(g)^2 & =\left(\sum_{i=1}^n \lambda_i\right)^2=\sum_{i=1}^n \lambda_i^2+2 \sum_{i<j} \lambda_i \lambda_j \\
& =\chi\left(g^2\right)+2 \chi_A(g) \\
\Rightarrow \chi(g)^2 & =\chi_S(g)+\chi_A(g) \qquad(* *)
\end{aligned}
\]
解 $(*)$ 和 $(* *)$ 得到所需结果。 $\blacksquare$