Forgot password
 Register account
View 129|Reply 1

[函数] 利用二进制展开的唯一性

[Copy link]

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-3-1 18:24 |Read mode
利用二进制展开的唯一性,考虑有限乘积
\[
P_N(z)=\prod_{n=0}^{N}(1+z^{2^n}).
\]
当你展开 \(P_N(z)\) 时,每个因子 \((1+z^{2^n})\) 给你一个选择:要么取 \(1\),要么取 \(z^{2^n}\)。因此,展开式是项
\[
z^{e_0 2^0+e_1 2^1+\cdots+e_N 2^N},\quad e_n\in\{0,1\}.
\]的和。

每个非负整数 \(m\) 都有一个唯一的二进制表示,这意味着当 \(N\to\infty\) 时,每个指数 \(m\ge0\) 恰好出现一次。因此,
\[
\prod_{n=0}^{\infty}(1+z^{2^n})=1+z+z^2+z^3+\cdots
\]
在 \(|z|<1\) 时有 $
\dfrac{1}{1-z}=1+z+z^2+z^3+\cdots
$,我们得到
\[
\frac{1}{1-z}=\prod_{n=0}^{\infty}(1+z^{2^n}).
\]

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-3-1 18:28
同理,利用三进制展开的唯一性,我们得到
\[
\frac{1}{1-z}=\prod_{n=0}^{\infty}(1+z^{3^n}+z^{2\cdot3^n}).
\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:48 GMT+8

Powered by Discuz!

Processed in 0.022827 seconds, 22 queries