Forgot password?
 Create new account
View 141|Reply 2

[函数] 如何化简一个三角函数表达式

[Copy link]

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2025-3-3 08:56:20 |Read mode
Last edited by hbghlyj at 2025-3-3 18:29:48下面这个表达式能化简成一个由数字组成的根式表达式。其值为 \(1.47603491931....\)
\[
-(2+\operatorname{Cos}[2 \operatorname{ArcTan}[\sqrt{6+\sqrt{33}}]])^2 \operatorname{Csc}[4 \operatorname{ArcTan}[\sqrt{6+\sqrt{33}}]]
\]其中 \(\rm ArcTan\) 是反正切函数。\(\rm Csc\) 是正弦函数的倒数。
最好是能用 mathematica 的指令化简。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2025-3-3 11:42:31
p0220.png

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-3 14:21:58
人工化简也不难啊,因为
\[\cos(\arctan x)=\frac1{\sqrt{1+x^2}},\]

\begin{align*}
\theta&=\arctan\sqrt{6+\sqrt{33}},\\
p&=\cos\theta=\frac1{\sqrt{7+\sqrt{33}}},\\
q&=\sin\theta=\sqrt{\frac{6+\sqrt{33}}{7+\sqrt{33}}},
\end{align*}

\[\text{原式}=-\frac{(2+\cos2\theta)^2}{\sin4\theta}=\frac{(1+2p^2)^2}{4pq(2p^2-1)},\]
代入上面的式子化简得
\[\text{原式}=\frac{\bigl(9+\sqrt{33}\bigr)^2}{4\bigl(5+\sqrt{33}\bigr)\sqrt{6+\sqrt{33}}}=\sqrt{\frac38\bigl(69-11\sqrt{33}\bigr)}.\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list