Forgot password?
 Create new account
View 104|Reply 1

[函数] 2017年ARML三角函数

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2025-3-4 01:48:25 |Read mode
PDF
1 Examples
  • 如果 $\sin x^{\circ}+\cos x^{\circ}=\tan x^{\circ}, 0\lt x<135$,计算 $\left\lfloor\frac{x}{10}\right\rfloor$。
  • 如果 $6 \tan ^{-1} x+4 \tan ^{-1}(3 x)=\pi$,计算 $x^2$。
  • 找到使得$$\csc x=\csc 2 x+\csc 3 x$$的最小正实数 $x$。
  • 假设 $\theta=\frac{2 \pi}{17}$。计算$$
    \cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta+\cos 11 \theta+\cos 13 \theta+\cos 15 \theta
    $$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-4 01:50:59
  • $\sin x^{\circ}+\cos x^{\circ}={\sin x^{\circ}\over\cos x^{\circ}}\implies\cos^2 x^{\circ}=\sin x^{\circ}(1-\cos x^{\circ})$
    设$c=\cos x(-\frac1{\sqrt2}\le c\le1)$,平方得$c^4=(1-c^2)(1-c)^2$
  • $6 \tan ^{-1} x+4 \tan ^{-1}(3 x)=\pi\implies\tan(6\tan^{-1}x)=-\tan(4\tan^{-1}3x)$$\implies -\frac{2\left(3 x^{5}-10 x^{3}+3 x\right)}{x^{6}-15 x^{4}+15 x^{2}-1}=\frac{12\left(9 x^{3}-x\right)}{81 x^{4}-54 x^{2}+1}$
    $x\in\left\{0,{4\pm\sqrt{7}\over3},{-4\pm\sqrt{7}\over3},\pm\sqrt{\frac{15+8 \sqrt{3}}{33} },\pm\sqrt{\frac{15-8 \sqrt{3}}{33} }\right\}$
    代回去检验,原方程只有一解$x=\sqrt{\frac{15-8 \sqrt{3}}{33} }$
  • $⇒\sin2x\sin3x=\sin x\sin 2 x+\sin x\sin 3 x$
    $⇒\cos x-\cos5x=\cos x-\cos3x+\cos2x-\cos4x$
    $⇒\cos3x-\cos5x=\cos2x-\cos4x$
    $⇒\sin x\sin 4x=\sin x\sin 3x$
    $(\because \sin x\ne0)⇒\sin4x=\sin3x$
    最小的正数解是$x=2 \tan ^{-1}\left(\sqrt{\frac{5}{3}-\frac{8}{3} \cos \left(\frac{1}{3} \cos ^{-1}\left(-\frac{13}{14}\right)\right)}\right)$
  • 由$\cos(nθ)=\cos((17-n)θ)$得
    $\cos \theta+\cos 3 \theta+⋯+\cos 15 \theta=\frac12(\cosθ+\cos2θ+⋯+\cos16θ)=\frac{\sin(17θ-\fracθ2)-\sin\fracθ2}{4\sin\fracθ2}=-\frac12$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list