Forgot password
 Register account
View 176|Reply 1

[不等式] 三角不等式

[Copy link]

7

Threads

8

Posts

1

Reputation

Show all posts

创之谜 posted 2025-3-5 20:04 |Read mode
$a,b,c为三角形三边长,求\dfrac{2c^2-3b^2}{a^2}最大值$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-3-5 20:21
根据 `(a^2-b^2)(c^2-d^2)\leqslant(ac-bd)^2` 得
\[2c^2-3b^2=6\left(\frac12-\frac13\right)(2c^2-3b^2)\leqslant6(c-b)^2<6a^2,\]
所以
\[\frac{2c^2-3b^2}{a^2}<6,\]
当 `2c=3b` 且 `a\to c-b` 时原式 `\to6`,所以原式无最大值,而有上确界 `6`。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:00 GMT+8

Powered by Discuz!

Processed in 0.011614 seconds, 25 queries