Forgot password?
 Register account
View 270|Reply 1

[不等式] 三角不等式

[Copy link]

7

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted 2025-3-5 20:04 |Read mode
$a,b,c为三角形三边长,求\dfrac{2c^2-3b^2}{a^2}最大值$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-5 20:21
根据 `(a^2-b^2)(c^2-d^2)\leqslant(ac-bd)^2` 得
\[2c^2-3b^2=6\left(\frac12-\frac13\right)(2c^2-3b^2)\leqslant6(c-b)^2<6a^2,\]
所以
\[\frac{2c^2-3b^2}{a^2}<6,\]
当 `2c=3b` 且 `a\to c-b` 时原式 `\to6`,所以原式无最大值,而有上确界 `6`。

Mobile version|Discuz Math Forum

2025-6-5 01:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit