|
Author |
hbghlyj
Posted at 2025-3-8 15:03:39
Last edited by hbghlyj at 2025-3-8 19:06:20类似的:$j_1,j_2\inN,j_1\ge j_2$
设\[c_2(\{j_1,m_1\},\{j_2,m_2\}):=\frac{(2 j_2)! (2 j_1-2 j_2+1)! (j_1-m_1)! (j_1+m_1)!}{(2 j_1+1)! (j_2-m_2)! (j_2+m_2)! (j_1-j_2-m_1-m_2)! (j_1-j_2+m_1+m_2)!}\]
证明
\[\tag2\label2\sum_{\begin{subarray}{rl}
|m_1|&\le j_1\\
|m_2|&\le j_2\\
|m_1+m_2|&\le j_1-j_2\end{subarray}} c_2(\{j_1,m_1\},\{j_2,m_2\}) =2 j_1-2 j_2+1\]
\[\tag3\label3\sum_{\begin{subarray}{rl}
|m_1|&\le j_1\\
|m_2|&\le j_2\\
|m_1+m_2|&\le j_1-j_2\end{subarray}}(-1)^{j_2+m_2}\sqrt{c_1(\{j_1,m_1\},\{j_2,m_2\})c_2(\{j_1,m_1\},\{j_2,m_2\})} =0\]- c2[{j1_,m1_},{j2_,m2_}]:= (((2 j1-2 j2+1)! (2 j2)! (j1-m1)! (j1+m1)!)/((1+2 j1)! (j2-m2)! (j1-j2-m1-m2)! (j2+m2)! (j1-j2+m1+m2)!));
- With[{j1=4,j2=3},Sum[If[Abs[m1+m2]<=j1-j2,c2[{j1,m1},{j2,m2}],0],{m1,-j1,j1},{m2,-j2,j2}]-1-2j1+2j2]
- With[{j1=4,j2=3},Sum[If[Abs[m1+m2]<=j1-j2,(-1)^(j2+m2)Sqrt[c1[{j1,m1},{j2,m2}]c2[{j1,m1},{j2,m2}]],0],{m1,-j1,j1},{m2,-j2,j2}]]
Copy the Code 模仿@tommywong来证明\eqref{2}:
$\displaystyle\sum_{m_2=-j_2}^{j_2}\sum_{m_1=-j_1}^{j_1}
c_2(\{j_1,m_1\},\{j_2,m_2\})$
$\displaystyle =\frac1{\binom{2 j_1+1}{2j_2}}\sum_{m_2=-j_2}^{j_2}\sum_{m_1=-j_1}^{j_1}\binom{j_1-m_1}{j_2+m_2}\binom{j_1+m_1}{j_2-m_2}$
$\displaystyle =\frac1{\binom{2 j_1+1}{2j_2}}\sum_{m_2=-j_2}^{j_2}\binom{2j_1+1}{2j_2+1}$
$\displaystyle =\frac1{\binom{2 j_1+1}{2j_2}}(2j_2+1)\binom{2j_1+1}{2j_2+1}$
$=2j_1-2j_2+1$
那么如何证明\eqref{3} |
|