Forgot password?
 Create new account
View 134|Reply 1

[概率/统计] 期望、方差

[Copy link]

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

hjfmhh Posted at 2025-3-7 13:32:35 |Read mode
Last edited by hbghlyj at 2025-3-7 23:00:1016.有甲,乙两个盒子,甲盒子里有 1 个红球,乙盒子里有 3 个红球和 3 个黑球,现从乙盒子里随机取出 $n\left(1 \leqslant n \leqslant 6, n \in \mathbf{N}^*\right)$ 个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为 $X$,则随着 $n\left(1 \leqslant n \leqslant 6, n \in \mathbf{N}^*\right)$ 的增大,下列说法正确的是
A.$E(X)$ 增大,$D(X)$ 增大
B.$E(X)$ 增大,$D(X)$ 减小
C.$E(X)$ 减小,$D(X)$ 增大
D.$E(X)$ 减小,$D(X)$ 减小
这题怎么解

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-8 00:08:07
概统我不熟,以下解法未必正确(先戴个头盔😁)

乙盒取出的 `n` 个球里预期有 `n/2` 个红球,放入甲盒后变成 `n+1` 个球里预期有 `n/2+1` 个红球,所以
\[E(X)=\frac{n/2+1}{n+1}=\frac12+\frac1{2(n+1)};\]
`D(X)` 表示方差对吧,那就是 `D(X)=E(X^2)-E(X)^2`,由于 `X=0` 或 `1`,两种情况均有 `X^2=X`,于是 `E(X^2)=E(X)`,因此
\[D(X)=E(X)\bigl(1-E(X)\bigr)=\frac14-\frac1{4(n+1)^2}.\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list