Forgot password?
 Create new account
View 201|Reply 4

[函数] 对称问题

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2025-3-27 19:44:20 |Read mode
Last edited by 敬畏数学 at 2025-3-31 09:05:03$f(x)=\dfrac{x}{x^2+1}  $,对于任意$ \dfrac{1}{3} \leqslant x\leqslant \dfrac{3}{5}$有$ f(x)+f(4x-a) \leqslant 0$均成立,则实数$ a $的范围__________. $ f(x)为奇函数,0\leqslant x\leqslant 1增函数,x\geqslant 1为减函数,且f(x)=f(\dfrac{1}{x}),$$f(x)=f(1/x)\leqslant f(a-4x),$,$x\leqslant a-4x\leqslant \dfrac{1}{x}  $,对$ \dfrac{1}{3}\leqslant x\leqslant \dfrac{3}{5} $均成立,则$ 3\leqslant a\leqslant 4 $

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2025-3-29 09:01:06
求助!

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2025-3-29 11:15:17
\[f(x)+f(4x-a)=\frac{x}{x^2+1}+\frac{4x-a}{(4x-a)^2+1}=\frac{(5x-a)(4x^2-ax+1)}{(1+x^2)(1+(4x-a)^2}\le 0\]
\[5x\le a\le 4x+\frac{1}{x}\]
对于$\frac{1}{3}\le x\le \frac{3}{5}$而言
\[5x\le 3\le a\le4\le 4x+\frac{1}{x}\]
最后
\[3\le a\le 4\]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2025-3-31 09:06:25
战巡 发表于 2025-3-29 11:15
\[f(x)+f(4x-a)=\frac{x}{x^2+1}+\frac{4x-a}{(4x-a)^2+1}=\frac{(5x-a)(4x^2-ax+1)}{(1+x^2)(1+(4x-a)^2}\ ...
谢谢您的解答!

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2025-3-31 17:29:25 From the mobile phone
注意函数图像的应用。非常妙的在于函数值自身的特性。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list