Forgot password?
 Create new account
View 472|Reply 2

[函数] 求证满足两个条件的角

[Copy link]

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2025-4-2 20:29:51 |Read mode
Last edited by hbghlyj at 2025-4-3 00:04:18对任意正整数 $n \geq 5$,总存在 $n$ 个锐角 $a_1, a_2, \dots,a_n$ 同时满足:
(1)$\sum_{i=1}^n a_i=\pi$
(2)$\sum_{i=1}^n \sin^2 a_i=2$

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2025-4-2 21:34:39
令 `a_1=a_2=a_3=x\in(0,\pi/3)`, `a_4=\cdots=a_n=(\pi-3x)/(n-3)`,这时满足所有角为锐角且和为 `\pi`,再令
\[f(x)=\sum_{i=1}^n\sin^2a_i=3\sin^2x+(n-3)\sin^2\frac{\pi-3x}{n-3},\]

\begin{align*}
f\left(\frac\pi3\right)&=3\sin^2\frac\pi3=\frac94>2,\\
f\left(\frac\pi n\right)&=n\sin^2\frac\pi n<4\sin^2\frac\pi4=2,
\end{align*}
(第二个不等号由 `n\sin^2\frac\pi n` 在 `n\geqslant3` 时递减而得)于是在 `(\pi/n,\pi/3)` 内存在 `x_0` 使 `f(x_0)=2`,此时即满足条件(2),即得证。

Comment

牛!  Posted at 2025-4-3 08:20

手机版Mobile version|Leisure Math Forum

2025-4-20 22:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list