Forgot password
 Register account
View 512|Reply 1

[不等式] 求证一个不等式

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-4-14 10:33 |Read mode
设$a,b>0,n\inN^*,m=\dfrac{n(n-1)}{2}$,求证:$a^mb^m(a^n+b^n)\leqslant 2(\dfrac{a+b}{2})^{n^2}$。

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2025-4-29 21:57
只需证:
$$x^{\frac{n(n-1)}{2}}(x^n+1)<2\left(\frac{x+1}{2}\right)^{n^2},x>1$$

$$f(x)=n^2\ln\frac{x+1}{2}-\frac{n^2-n}{2}\ln x-\ln\left(\frac{x^n+1}{2}\right)$$
$$f'(x)=\frac{n}{2x(x+1)(x^n+1)}\left[(n-1)x^{n+1}-(n+1)x^n+(n-1)x-n+1\right]$$

$$g(x)=(n-1)x^{n+1}-(n+1)x^n+(n-1)x-n+1$$
$$g'(x)=(n^2-1)x^n-n(n+1)x^{n-1}+n-1$$
$$g''(x)=n(n^2-1)x^{n-2}(x-1)>0$$
$$\Longrightarrow g'(x)>g'(1)=0\Longrightarrow g(x)>g(1)=0\Longrightarrow f'(x)>0\Longrightarrow f(x)>f(1)=0$$
得证.
Wir müssen wissen, wir werden wissen.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 21:47 GMT+8

Powered by Discuz!

Processed in 0.060140 seconds, 24 queries