Forgot password?
 Register account
View 904|Reply 4

[几何] 构造问题:三角形

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2025-4-30 08:10 |Read mode
Last edited by 力工 2025-5-3 09:18已知斜$\triangle ABC$的外接圆半径为$R$,三内角所对的边分别为$a,b,c$,请大佬们帮忙构造出这样的$\triangle ABC$使$a\cdot a+b\cdot b=c\cdot 2R$(托勒密).

Related threads

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-4-30 14:26
小建议:外接圆半径建议用大写 `R` 😁(小写通常表示内切圆

相当于构造 `\sin^2A+\sin^2B=\sin C` 且不是直角三角形。

当 `C` 为锐角时:
令 `A\to0`, `B\to180\du-C`,则 `\LHS\to\sin^2C<\RHS`;
令 `A=90\du`, `B=90\du-C`,则 `\LHS>1>\RHS`。
所以对于任意锐角 `C` 都必存在斜 `\triangle ABC` 使 `\LHS=\RHS`。

随便取一个算下试试,比如让 `C=45\du`,代入后化简得 `\sin(45\du-2A)=\sqrt2-1`,得 `A=22.5\du-0.5\arcsin\bigl(\sqrt2-1\bigr)`。

Comment

谢谢!已改!想直接找个图,但又想不到。  Posted 2025-5-3 09:19

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-5-1 10:36 From mobile phone
Last edited by hbghlyj 2025-5-1 15:25若 $\sin^2 A+\sin^2 B=\sin C$,求证$$c^2=\frac{(a^2-b^2)^2(a^2+b^2)}{a^4+6 a^2 b^2+b^4}$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-1 14:39
化边的话,用秦九韶公式
\begin{gather*}
a^2+b^2=2Rc=\frac{abc^2}{2S},\\
4S^2=\left(\frac{abc^2}{a^2+b^2}\right)^2,\\
a^2b^2-\left(\frac{a^2+b^2-c^2}2\right)^2=\frac{a^2b^2c^4}{(a^2+b^2)^2},\\
\frac{a^2b^2\bigl((a^2+b^2)^2-c^4\bigr)}{(a^2+b^2)^2}-\left(\frac{a^2+b^2-c^2}2\right)^2=0,\\
(a^2+b^2-c^2)\left(\frac{a^2b^2(a^2+b^2+c^2)}{(a^2+b^2)^2}-\frac{a^2+b^2-c^2}4\right)=0,\\
(a^2+b^2-c^2)\frac{(a^4+6a^2b^2+b^4)c^2-(a^2+b^2)(a^2-b^2)^2}{4(a^2+b^2)^2}=0.
\end{gather*}

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit