|
Author |
hbghlyj
Posted 2025-5-18 02:10
双曲抛物面 $z = x^2 - y^2$
\( f(x, y) = x^2 - y^2 \):
\[
K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2} = \frac{-4}{(1 + 4x^2 + 4y^2)^2}\in[-4, 0)
\]
椭圆抛物面 $z = x^2 + \frac{y^2}{b^2}$
\( f(x, y) = x^2 + \frac{y^2}{b^2} \):
\[
K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2} = \frac{4}{b^2(1 + 4x^2 + \frac{4y^2}{b^4})^2} \in(0,\frac4{b^2}]
\]
单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
\[K=-\frac{c^6}{(c^4+a^2z^2+c^2z^2)^2}\in[-\frac1{c^2},0)\]
双叶双曲面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
\[
K =\frac{c^6}{[c^4-(a^2+c^2)z^2]^2}\in(0,\frac{c^2}{a^4}]
\] |
|