Forgot password
 Register account
View 4455|Reply 2

[不等式] $\frac{x_1x_2\cdots x_n}{(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)}$

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2025-5-25 10:58 |Read mode
设$a,b$是正常数,$x_1,x_2,\cdots,x_n$是正实数,$n\geqslant2$是正整数,求
$\frac{x_1x_2\cdots x_n}{(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)}$
的最大值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-5-25 13:47
Last edited by kuing 2025-5-25 14:04记 `N=n+1`,由 Carlson 不等式有
\begin{align*}
&(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)\\
\geqslant{}&\left(\sqrt[N]{ax_1\cdots x_{n-1}x_n}+\sqrt[N]{x_1x_2\cdots x_nb}\right)^N\\
={}&x_1x_2\cdots x_n\left(\sqrt[N]a+\sqrt[N]b\right)^N,
\end{align*}
应该能取等吧😁

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2025-5-25 20:22
kuing 发表于 2025-5-25 13:47
应该能取等吧😁
取等就是括号内的东西比例相同嘛,显然能取等
Wir müssen wissen, wir werden wissen.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:53 GMT+8

Powered by Discuz!

Processed in 0.014519 seconds, 27 queries