Forgot password?
 Register account
View 4176|Reply 2

[不等式] $\frac{x_1x_2\cdots x_n}{(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)}$

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2025-5-25 10:58 |Read mode
设$a,b$是正常数,$x_1,x_2,\cdots,x_n$是正实数,$n\geqslant2$是正整数,求
$\frac{x_1x_2\cdots x_n}{(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)}$
的最大值。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-25 13:47
Last edited by kuing 2025-5-25 14:04记 `N=n+1`,由 Carlson 不等式有
\begin{align*}
&(a+x_1)(x_1+x_2)\cdots(x_{n-1}+x_n)(x_n+b)\\
\geqslant{}&\left(\sqrt[N]{ax_1\cdots x_{n-1}x_n}+\sqrt[N]{x_1x_2\cdots x_nb}\right)^N\\
={}&x_1x_2\cdots x_n\left(\sqrt[N]a+\sqrt[N]b\right)^N,
\end{align*}
应该能取等吧😁

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-25 20:22
kuing 发表于 2025-5-25 13:47
应该能取等吧😁
取等就是括号内的东西比例相同嘛,显然能取等
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit