Forgot password
 Register account
View 16|Reply 2

[不等式] 复杂函数不等式插值简单函数

[Copy link]

53

Threads

153

Posts

2

Reputation

Show all posts

1+1=? posted 2025-7-24 01:36 |Read mode
在证明不等式
$\forall x\in [0,\frac{\pi}{2}) :$
\begin{align}sin^6 x-sin^4 x +(\frac{sinx}{x})^4 \geqslant 2cosx-\frac{sinx}{x}\end{align}时,我插入了另外一个函数:
$\forall x\in [0,\frac{\pi}{2}) :  $
\begin{align}sin^6 (x)-sin^4 (x)+(\frac{sin(x)}{x})^4 \geqslant \frac{\sqrt{\pi}}{6}x^2 +2cos(\frac{\pi}{4}x)+cos(x)-2 \geqslant 2cos(x)-\frac{sin(x)}{x}\end{align}
但插入函数之后,第一个不等号明显更难证明了

53

Threads

153

Posts

2

Reputation

Show all posts

original poster 1+1=? posted 2025-7-23 23:18
(2)事实上有更强式子:
$\forall x\in [0,\frac{\pi}{2}) ,  $
\begin{align}sin^6 (x)-sin^4 (x)+(\frac{sin(x)}{x})^4 \geqslant \frac{11}{45}x^2 +2cos(\frac{3}{4}x)+cos(x)-2 \geqslant 2cos(x)-\frac{sin(x)}{x}\end{align}

Comment

如何证明呢  posted 2025-7-23 23:30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-25 21:12 GMT+8

Powered by Discuz!

Processed in 0.011975 seconds, 23 queries