|
original poster
hbghlyj
posted 2025-8-12 18:18
Why projectivity is used in $N⊗_RM≅\Hom_R(M^∨, N)$
- There’s always a natural map
$$
\theta:\ N\otimes_R M \longrightarrow \Hom_R(M^∨,N),\qquad
n\otimes m \mapsto (\phi\mapsto n\,\phi(m)),
$$
but it isn’t generally bijective. - If $M$ is finitely generated projective as a left $R$-module, then $M$ has a dual basis$\{(m_i,f_i)\}_{i=1}^r$ with $m_i\in M$, $f_i\in M^{\vee}$ such that
$$
\sum_i f_i(m)\,m_i = m\quad\text{for all }m\in M.
$$
Define the inverse
$$
\Psi:\ \Hom_R(M^{\vee},N) \longrightarrow N\otimes_R M,
\qquad
\Psi(F)=\sum_i F(f_i)\otimes m_i.
$$
Check $ \theta\circ\Psi = \mathrm{id}$: for $F\in\Hom_R(M^{\vee},N)$ and $\varphi\in M^{\vee}$,
$$
\theta(\Psi(F))(\varphi)
= \theta\Big(\sum_i F(f_i)\otimes m_i\Big)(\varphi)
= \sum_i F(f_i)\,\varphi(m_i)
= \sum_i F\big(f_i\cdot \varphi(m_i)\big)
= F\Big(\sum_i f_i\cdot \varphi(m_i)\Big).
$$
But $\sum_i f_i\cdot \varphi(m_i)=\varphi$ (evaluate both sides at any $m$ and use $\sum_i f_i(m)m_i=m$), hence this equals $F(\varphi)$.
Check $ \Psi\circ\theta = \mathrm{id}$: for a pure tensor $n\otimes m$,
$$
\Psi\big(\theta(n\otimes m)\big)
= \sum_i \theta(n\otimes m)(f_i)\otimes m_i
= \sum_i n\,f_i(m)\otimes m_i
= n\otimes \Big(\sum_i f_i(m)\,m_i\Big)
= n\otimes m.
$$
So $\Psi$ is the desired inverse, so $θ$ becomes an isomorphism for every right $R$-module $N$. - If $M$ is not projective, $\theta$ can fail badly. Classic counterexample:
take $R=\mathbb Z$, $M=\mathbb Z/n\mathbb Z$ (not projective), $N=\mathbb Z$.
Then $N\otimes_R M\cong \mathbb Z/n\mathbb Z\neq 0$, but
$\Hom_R(M^{*},N)=\Hom_{\mathbb Z}(0,\mathbb Z)=0$
since $M^{*}=\Hom_{\mathbb Z}(\mathbb Z/n\mathbb Z,\mathbb Z)=0$.
So $\theta$ cannot be an isomorphism in general. - In our setting $R=M_n(k)$ and $M\cong Re$ with $e=e_{11}$. Because $e$ is idempotent,
$$
R \cong Re\oplus R(1-e)
$$
as left $R$-modules, so $Re$ is a direct summand of a free module—hence projective (and clearly finitely generated). That’s exactly why the tidy identification
$$
N\otimes_R M \cong \Hom_R(M^{*},N)
$$goes through here.
|
|