Forgot password?
 Create new account
View 1758|Reply 6

USAMO

[Copy link]

9

Threads

23

Posts

169

Credits

Credits
169

Show all posts

琉璃幻 Posted at 2013-12-12 06:34:33 |Read mode
設實數$a,b\in R^{+}$, $a^n=a+1$, $b^{2n}=b+3a$.比較$a,b$大小

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-12-12 10:40:37
n是正整数吗?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-12 12:59:44

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-12-12 15:07:12
由 $a^n=a+1>1$ 知 $a>1$,故 $b^{2n}=b+3a>1$ 知 $b>1$,因为
\[a^{2n}-b^{2n}=(a+1)^2-(b+3a)=(a-1)^2+a-b>a-b \riff a^{2n}-a>b^{2n}-b,\]
而 $f(x)=x^{2n}-x$ 显然在 $(1,+\infty)$ 上递增,故 $f(a)>f(b) \iff a>b$。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-12-12 21:23:23
帖的标题是什么意思?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-12-12 21:50:11
回复 5# isee

大概是美国数学奥林匹克

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-13 12:19:55
帖的标题是什么意思?
isee 发表于 2013-12-12 21:23

isee,救命啊!aurora下载了,输入 公式显示小正方形及其阴影,怎么回事啊?
详见此贴:kuing.cjhb.site/forum.php?mod=viewthread& … 1&extra=page%3D1

手机版Mobile version|Leisure Math Forum

2025-4-21 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list