Forgot password?
 Create new account
View 2741|Reply 2

[不等式] 来自人教群的简单二元不等式

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-12-13 00:13:13 |Read mode
QQ截图20131213001141.gif

\begin{align*}
(a+2b)^3&\leqslant a^2b(a+2b)^3 \\
& =\frac1{27}\cdot 3a\cdot 3a\cdot 3b\cdot (a+2b)\cdot (a+2b)\cdot (a+2b) \\
& \leqslant \frac1{27}\left( \frac{3a+3a+3b+a+2b+a+2b+a+2b}6 \right)^6 \\
& =27\left( \frac{a+b}2 \right)^6 \\
& \leqslant 27\left( \frac{a^2+b^2}2 \right)^3,
\end{align*}

\[a+2b\leqslant \frac32(a^2+b^2).\]

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2013-12-13 11:19:40
$\dfrac32(a^2+b^2)\geqslant a+2b\Leftrightarrow 2a^2+b^2+(a-1)^2+2(b-1)^2\geqslant3$
而$2a^2+b^2=a^2+a^2+b^2\geqslant 3\sqrt[3]{a^2a^2b^2}\geqslant3,(a-1)^2+2(b-1)^2\geqslant0$,下略

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-13 12:16:20

手机版Mobile version|Leisure Math Forum

2025-4-21 23:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list