Forgot password?
 Create new account
View 7272|Reply 25

[几何] 最大值

[Copy link]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-13 13:58:07 |Read mode
Last edited by 乌贼 at 2013-12-13 14:11:002011年全国新课标理数16题。(几何法)
    在 $\triangle ABC$中,$\angle B=60^\circ,AC=\sqrt3$,则$AB+2BC$的最大值为

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-13 17:40:54
回复 1# 乌贼
几何是你的强项啦!
代数有三角(正弦定理)、判别式法(+余弦定理)吧,或者均值不等式、柯西等等方法

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-14 01:27:35
Last edited by 乌贼 at 2013-12-14 01:34:00回复 2# 其妙
三角函数
  \[\frac{\sqrt3}{\sin B}=\frac{AB}{\sin C}=\frac{BC}{\sin A}\riff
BC=2\sin A,AB=2\sin C=\sqrt3\cos A+\sin A\]
\[f(A)=AB+2BC=\sqrt3\cos A+5\sin A=2\sqrt7\sin(A+\arctan\frac5{\sqrt3})
\leqslant2\sqrt7\]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-14 03:56:35
回复 2# 其妙
其他方法弄得我头晕,不管了。道题代数方法太多,几何法估计没人鸟
上一个,由题意知,$B$点在顶角为60°的小圆的优弧上滑动,延长$AB$至$D$,使$BD=2BC$,连接$CD$,过$C$点作$AD$的垂足$F$,有$\tan\angle FDC=\frac{CF}{DF}=\dfrac{\frac{\sqrt3BC}{2}}{\frac{5BC}2}=\frac{\sqrt3}5$
知$D$点在另一顶角为定值的大圆的优弧上滑动,$AD$的最大值为该圆的直径,
过$A$作大圆的直径$AE$,连接$EC$有
\[\frac{AC}{EC}=\frac{\sqrt3}5\riff EC=5\riff AD_\max=AE=2\sqrt7\]
同理可推$AB+kBC$($k$为常数)的最大值
211.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-14 23:35:47
Last edited by hbghlyj at 2025-3-21 19:51:04不知是2楼的哪种方法。
设$AB=c,BC=a,AC=b$由余弦定理
\begin{align*}b^2=a^2+c^2-2ac\cos\angle B\riff a^2+c^2-ac-3=0\\\riff(a+2c)^2=3c^2+5ac+3=3+3k-ka^2-(k-3)c^2+(k+5)ac\\=3+3k-(\sqrt ka)^2-(\sqrt{k-3}c)^2+2\frac{k+5}2ac\end{align*}
令\[\sqrt k\sqrt{k-3}=\frac{k+5}2\]解得$k=\frac{25}3$或$k=-1$(舍去)有\[(a+2c)^2=28-(\sqrt{\frac{25}3}a-\sqrt{\frac{16}3}c)^2\leqslant28\riff a+2c\leqslant\sqrt{28}\]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-14 23:45:00
回复 2# 其妙
判别式法怎么做啊?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-15 13:47:27
Last edited by hbghlyj at 2025-3-21 19:50:04
回复  其妙
判别式法怎么做啊?
乌贼 发表于 2013-12-14 23:45

设$a+2c=t$,则$a=t-2c$代入余弦定理的那个式子,……

你的余弦定理怎么不显示啊?
\begin{align*}b^2=a^2+c^2-2ac\cos\angle B\riff a^2+c^2-ac-3=0\\\riff(a+2c)^2=3c^2+5ac+3=3+3k-ka^2-(k-3)c^2+(k+5)ac\\=3+3k-(\sqrt ka)^2-(\sqrt{k-3}c)^2+2\frac{k+5}2ac\end{align*}
你的几何方法构造的出神入化!

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-15 16:15:06
回复 7# 其妙
愚钝,把它写完整由余弦定理得\[a^2+c^2-ac-3=0\]设$a+2c=t$,则$a=t-2c$代入上式得\[7c^2-5tc+t^2-3=0\\\Delta=28\times3-3t^2\geqslant0\\t\leqslant\sqrt{28}\]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-12-15 23:03:59
回复 4# 乌贼

very nice!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-15 23:07:41
回复  其妙
愚钝,把它写完整由余弦定理得\[a^2+c^2-ac-3=0\]设$a+2c=t$,则$a=t-2c$代入 ...
乌贼 发表于 2013-12-15 16:15

nice!
怎么还是不能显示?
把你的代码复制在这儿显示:
$7c^2-5tc+t^2-3=0\\\Delta=28\times3-3t^2\geqslant0\\t\leqslant\sqrt{28}$

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-12-15 23:57:35
回复 10# 其妙

\begin{gather*}
7c^2-5tc+t^2-3=0\\\Delta=28\times3-3t^2\geqslant0\\t\leqslant\sqrt{28}
\end{gather*}
这个能显示不?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-16 01:36:13
Last edited by hbghlyj at 2025-3-21 19:50:17回复 2# 其妙
均值是这样吧,配凑真难,还不如三角及判别式!
\begin{align*}3=a^2+c^2-ac=a^2+c^2+\frac37ac-\frac{10}{7}ac\\\geqslant a^2+c^2+\frac37ac-\frac{25}{28}a^2-\frac47c^2=\frac3{28}(a^2+4ac+4c^2)\riff\\\sqrt{28}\geqslant(a+2c)\end{align*}

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-16 01:42:47
回复 2# 其妙
就剩柯西了

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2013-12-16 01:47:25
回复 12# 乌贼

其妙估计又看不到
I am majia of kuing

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-16 01:52:57
回复 14# 爪机专用
为啥?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-16 13:31:47
回复 11# kuing
你的能显示,他的不能显示!

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-12-16 13:44:36
回复 16# 其妙

果然如此
在 \ [ \ ] 里直接断行,你那里的显示就有问题了。
这也不奇怪,因为 \ [ \ ] 里直接断行本来不正规,latex 里估计也会报错。
多行公式的输入方法应该用环境来输入(见置顶)。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-16 13:52:32
回复 17# kuing
哦,以前isee写了一篇关于2013福建高考文科试题的解法,我也是不能看公式,我还以为他在隐藏解法呢

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-16 14:03:51
Last edited by hbghlyj at 2025-3-21 19:50:47
回复  其妙
就剩柯西了
乌贼 发表于 2013-12-16 01:42

OK!柯西的变式:
\begin{align*}b^2=a^2+c^2-2ac\cos\angle B\riff a^2+c^2-ac=3\\\riff3=(a-\dfrac c2)^2+\dfrac{3c^2}{4}=\dfrac{(a-\dfrac c2)^2}1+\dfrac{(\frac52c)^2}{\frac{25}3}\geqslant\dfrac{(a-\dfrac c2+\dfrac52c)^2}{1+\dfrac{25}{3}}=\dfrac{(a+2c)^2}{\dfrac{28}3}\end{align*}
故$(a+2c)^2\leqslant3\cdot\dfrac{28}3=28\riff a+2c\leqslant2\sqrt7$

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2013-12-18 17:11:41
Last edited by 乌贼 at 2013-12-19 19:58:00回复 7# 其妙
判别式法与线性规划如出一辙,由$a^2+c^2-ac=3$知图形为旋转的椭圆(没计算,根据$a,c$有最大值判断),设  $a+2c=t$  联立方程\begin{cases} a^2+c^2-ac=3 \\ a+2c=t \end{cases}得\[7c^2-5tc+t^2-3=0\]即当$\Delta=0$时直线与椭圆相切,此时的$t=\sqrt{28}$为最大值。$t=-\sqrt{28}$(舍去)。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list