Forgot password?
 Register account
View 3391|Reply 11

[不等式] 小不等式的证明

[Copy link]

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2013-12-16 12:17 |Read mode
已知$|x|\le1,|y|\le1$,求证:$|\frac{x+y}{1+xy}|\le1$
用放缩法怎么直接证明?请教。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-12-16 13:11
$(1-x^2)(1-y^2)\geqslant0\iff 1+x^2y^2\geqslant x^2+y^2\iff (1+xy)^2\geqslant(x+y)^2$

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-12-16 13:28
对复数x、y成立不?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-12-16 14:16
对复数x、y成立不?
其妙 发表于 2013-12-16 13:28
只将 $x$, $y$ 改为复数而待证不等式不变的话,是不成立的,比如说 $x=0.5+0.5i$, $y=-0.5+0.5i$。

但是如果将 $x$, $y$ 改为复数同时将待证不等式稍改变一点,变成
\[\left|\frac{x+y}{1+\bar x\cdot y}\right|\leqslant1\]
就成立,而且还可以加强,见旧版论坛的这贴:kkkkuingggg.haotui.com/viewthread.php?tid=831

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-12-16 14:54
回复 4# kuing

哦,忘了实数的范围了。
反而有了更多的收获,谢谢!

尝试几次放缩法,均无功而返。

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-12-16 15:02
Last edited by 战巡 2013-12-16 15:23回复 1# 史嘉

当$x=\pm 1$或$y=\pm 1$时,显然成立
当$x\ne \pm 1, y\ne \pm 1$时,令$x=\tanh(m), y=\tanh(n)$
可得
\[\abs{\frac{x+y}{1+xy}}=\abs{\frac{\tanh(m)+\tanh(n)}{1+\tanh(m)\tanh(n)}}=\abs{\tanh(m+n)}<1\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-12-16 15:11
回复 6# 战巡

双曲党……
PS、tanh -> \tanh

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-12-16 15:25
回复 7# kuing


    已改~双曲多好用啊,一下就秒了~

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted 2013-12-16 17:12
回复 3# 其妙


    如果是复数,结论的分母中"$1+xy$"改成"$1+\overline{x}y$"即可,仍然成立

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-12-16 17:16
回复  其妙


    如果是复数,结论的分母中"$1+xy$"改成"$1+\overline{x}y$"即可,仍然成立 ...
007 发表于 2013-12-16 17:12
四楼已经讲了……

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted 2013-12-16 17:20
回复 10# kuing


    刚看到,来不及删除了。没有看完贴就发帖了……就当练习发代码了……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-12-16 18:04
复数时原来在旧版有啊!
怪不得似曾相识,但复数又证明不出,原来要改一下!

Mobile version|Discuz Math Forum

2025-6-5 19:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit