Forgot password?
 Create new account
View 3398|Reply 8

[几何] 转发个问题,要求解析法

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-8-30 17:55:52 |Read mode
一看到解析,不敢兴趣,哪位试下 未命名.jpg
是解题群一老师问的“拒绝坐标法”,向量可以用,好奇怪的要求,难道是章节训练题.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-8-30 18:24:49
到底是要求解析法还是不准坐标法?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-8-30 19:03:35
后来透露出他坐标解决了,猜是别的都可以吧

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-30 19:19:11
解析法和坐标法有什么区别……

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-8-30 19:28:08
原话复制的,估计他的坐标法指“设点的坐标”---瞎猜
我是连题目也懒得看,发贴原因是吸引人来论坛

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-30 20:27:57
既然说了向量可以用,那就用向量吧。
设 $CB=a$, $\vv{CB}=\vv a$, $CA=b$, $\vv{CA}=\vv b$,则
\begin{align*}
OG\perp CD&\iff\vv{CG}\cdot\bigl(\vv{CO}-\vv{CG}\bigr)=0 \\
& \iff\frac{\vv a+\vv b}3\cdot\Biggl( \vv{CO}-\frac{\vv a+\vv b}3 \Biggr)=0 \\
& \iff3\vv a\cdot\vv{CO}+3\vv b\cdot\vv{CO}=\bigl(\vv a+\vv b\bigr)^2 \\
& \iff\frac{3a^2}2+\frac{3b^2}2=a^2+b^2+2ab\cos C \\
& \iff\cos C=\frac{a^2+b^2}{4ab},
\end{align*}
……

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-30 22:06:46
用平几其实也很简单,如图
QQ截图20130830220338.png
取 $CA$, $CB$ 的中点 $E$, $F$,由 $OG\perp CD$ 易知 $C$, $O$, $E$, $F$, $G$ 五点共圆。
设 $AB=c$,则 $EH=HF=c/4$, $CH=CD/2$, $HG=CG-CH=CD/6$,于是由相交弦定理及中线长公式得
\[\frac{c^2}{16}=EH\cdot HF=CH\cdot HG=\frac{CD^2}{12}=\frac{2a^2+2b^2-c^2}{48},\]
即得
\[c^2=\frac{a^2+b^2}2,\]
代余弦定理后亦得
\[\cos C=\frac{a^2+b^2}{4ab}.\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-30 22:10:51
咦?等一下,这样下去,取等的时候不就是等边三角形?但是题目不允许等边三角形,哼哼,这题有瑕疵……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-8-30 22:59:07
回复 8# kuing
改为求角C的取值范围就好了

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list