Forgot password?
 Create new account
View 2877|Reply 11

不使用牛莱公式

[Copy link]

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-12-26 14:36:36 |Read mode
证明 1/x 在 [1,2] 上的积分为 ln2

(来自贴吧,比较有趣的问题)

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-12-26 14:38:45
大概从那个FAQ弄过去吧,1/(n+1)+1/(n+2)+...+1/(n+n) 那个

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-12-26 14:51:20
由 $\ln(1+x)<x$(当 $x\ne0$)分别令 $x=1/k$ 及 $x=-1/k$ 得到菊部
\[\ln\frac{k+1}k<\frac1k<\ln\frac k{k-1},\]
于是
\[\ln \frac{2n+1}{n+1}<\frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{n+n}<\ln 2,\]
取极限,中间是 $\int_1^21/x\rmd x$,两边为 $\ln2$。

4

Threads

8

Posts

63

Credits

Credits
63

Show all posts

链剑心 Posted at 2014-4-8 15:34:29
爆菊爆多了吧

0

Threads

15

Posts

80

Credits

Credits
80

Show all posts

LLLYSL Posted at 2014-7-1 07:30:46
用欧拉常数来证明也可以
欧拉常数.png

0

Threads

2

Posts

10

Credits

Credits
10

Show all posts

潇湘君 Posted at 2014-11-25 19:08:12
好方法啊!

3

Threads

59

Posts

403

Credits

Credits
403

Show all posts

caijinzhi Posted at 2014-12-3 17:49:46
回复 3# kuing
那局部如何不用结论得出?避免循环论证。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-12-3 18:21:19
回复 7# caijinzhi

哪里循环了?

3

Threads

59

Posts

403

Credits

Credits
403

Show all posts

caijinzhi Posted at 2014-12-7 20:44:08
回复 8# kuing
就是那个夹逼不等式!

2

Threads

29

Posts

167

Credits

Credits
167

Show all posts

羊1234 Posted at 2014-12-10 15:20:59
回复  kuing
就是那个夹逼不等式!
caijinzhi 发表于 2014-12-7 20:44

这是什么不等式?夹逼不等式?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-12-11 07:14:59
回复 7# caijinzhi


那个用导数就能推出来
导数和定积分没有什么联系的,早期完全是独立发展,除非你用牛莱公式

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-12-11 21:09:56
怕循环的话,整成这样子
\[ \ln \frac{k+1}k<\frac1k<\ln \frac k{k-1}\iff \frac{k+1}k<e^{1/k}<\frac k{k-1} \iff \left( 1+\frac1k \right)^k<e<\left( 1+\frac1{k-1} \right)^k,\]
由 e 的定义。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list