Forgot password
 Register account
View 3257|Reply 11

[不等式] 来自人教论坛的数列不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-8 08:17 |Read mode
链接:bbs.pep.com.cn/forum.php?mod=viewthread&tid=2875429
题目:
bn=2^n-1/2^n,,数列{1/bn}的前n项和为Tn,求证Tn<4/3
没什么特别想法,很常规地放缩到等比数列,由于 $1/2^n$ 很小,就放缩一点点吧,放到 $1.9^n$ 好了。
当 $n=1$ 时不等式显然成立,当 $n\geqslant2$ 时
\begin{align*}
2^n-1.9^n&=0.1\times(2^{n-1}+2^{n-2}\times1.9+\cdots+2\times1.9^{n-2}+1.9^{n-1})\\
&>0.1\times(2+1.9)\\
&=0.39\\
&>0.25\\
&\geqslant\frac1{2^n},
\end{align*}
即得
\[b_n=2^n-\frac1{2^n}>1.9^n,\]
于是
\begin{align*}
T_n&<\frac1{b_1}+\sum_{k=2}^n\frac1{1.9^k}\\
&<\frac23+\frac{\frac1{1.9^2}}{1-\frac1{1.9}}\\
&=\frac23+\frac1{1.9\times0.9}\\
&=\frac23+\frac{100}{171}\\
&<\frac23+\frac{100}{150}\\
&=\frac43.
\end{align*}

综上,原不等式得证。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-9-8 08:43
保留项多些,放缩就可以松些。
显然
\[\frac1{b_n}=\frac{2^n}{(2^n-1)(2^n+1)}=\frac12\left( \frac1{2^n-1}+\frac1{2^n+1} \right)<\frac12\left( \frac1{2^{n-1}}+\frac1{2^n} \right)=\frac3{2^{n+1}},\]
当 $n=1$, $2$ 时容易验证不等式成立,当 $n\geqslant3$ 时
\begin{align*}
T_n&<\frac1{b_1}+\frac1{b_2}+\sum_{k=3}^n\frac3{2^{k+1}}\\
&<\frac23+\frac4{15}+\frac{\frac3{2^4}}{1-\frac12}\\
&=\frac{157}{120}\\
&<\frac43.
\end{align*}

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-9-8 11:06
回复 2# kuing
倒数第二步类似有少少问题…弱弱的问个,倒数第二步有神马作用?
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-9-8 11:09
回复 3# 睡神

噢,那个打错了,已改

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-9-8 11:16
回复 4# kuing
并且个人感觉类似不需要那么麻烦吧…莫非错觉?
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-9-8 11:24
回复 5# 睡神
你也写一个吧

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-9-8 11:53
$\dfrac{1}{b_n}=\dfrac{2^n}{(2^n-1)(2^n+1)}\le\dfrac{2}{3}\times\dfrac{1}{2^{n-1}}$
后面就是等比求和了…
不熟悉代码,爪机打的真不舒服…
都不知道对不对…
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-9-8 12:02
回复 7# 睡神

噢,这个居然刚刚好……

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-9-8 12:05
回复 8# kuing
起床咯…找吃的去,快要给饿晕了…
除了不懂,就是装懂

7

Threads

127

Posts

0

Reputation

Show all posts

第一章 posted 2013-9-8 12:10
睡神的速度挺快的

7

Threads

127

Posts

0

Reputation

Show all posts

第一章 posted 2013-9-8 12:11
还是在床上lu的?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-8 14:11
回复  kuing
起床咯…找吃的去,快要给饿晕了…
睡神 发表于 2013-9-8 12:05
12点啦,和kk有的一比了,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 19:53 GMT+8

Powered by Discuz!

Processed in 0.012060 seconds, 22 queries