Forgot password?
 Register account
View 2913|Reply 11

[数列] 一道超水题,除了导数外,还有什么简单方法

[Copy link]

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

福州小江 Posted 2013-9-9 16:31 |Read mode
Last edited by hbghlyj 2025-3-19 08:08已知各项均为正数的等比数列 $\an$,若 $2 a_4+a_3-2 a_2-a_1=8$,则 $2 a_8+a_7$ 的最小值为

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-9 16:59
的确比较水也比较无聊。
设 $a_1=a>0$,公比为 $q>0$,则
\[8=a(2q^3+q^2-2q-1)=a(q^2-1)(2q+1),\]
故此 $q^2>1$,令 $q^2=1+x$, $x>0$,则
\[2a_8+a_7=a(2q^7+q^6)=\frac{8(2q^7+q^6)}{(q^2-1)(2q+1)}=\frac{8q^6}{q^2-1}=\frac{8(1+x)^3}x,\]
由均值不等式有
\[(1+x)^3=\left( \frac12+\frac12+x \right)^3\geqslant \left( 3\cdot \sqrt[3]{\frac x4} \right)^3=\frac{27}4x,\]
所以
\[2a_8+a_7\geqslant 54,\]
当 $x=1/2$ 时取等。

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

 Author| 福州小江 Posted 2013-9-9 17:09
厉害!我用待定系数,杀鸡用牛刀了!

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-9 19:54
Last edited by 睡神 2013-9-9 20:09我也来玩玩...
$a_1(2q^3+q^2-2q-1)=8$

$a_1(2q+1)(q^2-1)=8$

$a_1(2q+1)=\dfrac{8}{q^2-1}$
$2a_8+a_7=a_1q^6(2q+1)=\dfrac{8q^6}{q^2-1}$
$\dfrac{1}{2a_8+a_7}=\dfrac{q^2-1}{8q^6}=\dfrac{1}{2}\cdot \dfrac{1}{2q^2}\cdot \dfrac{1}{2q^2}\cdot (1-\dfrac{1}{q^2})\le \dfrac{1}{2}\cdot \Bigg (\dfrac{\dfrac{1}{2q^2}+\dfrac{1}{2q^2}+1-\dfrac{1}{q^2}}{3}\Bigg )^3=\dfrac{1}{54}$

$2a_8+a_7\ge 54$
当且仅当$\dfrac{1}{2q^2}=1-\dfrac{1}{q^2}$,即$q=\sqrt{\dfrac{3}{2}}$时,取等号.
除了不懂,就是装懂

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-9 20:10
回复 4# 睡神

有啥区别……

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

 Author| 福州小江 Posted 2013-9-9 20:12
来个低级的
QQ图片20130909201037.jpg

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-9 20:13
回复 5# kuing
没啥区别呀...只是玩玩罢了...顺便练练代码...
除了不懂,就是装懂

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-10 12:52
大家都来玩玩乐乐!同乐!
$8a_7+27a_1+27a_1\geqslant3\sqrt[3]{8a_7\cdot27a_1\cdot27a_1}=54\sqrt[3]{a_7a_1^2}=54a_3$
故$8a_7\geqslant54(a_3-a_1)$,$\dfrac{8a_7}{a_3-a_1}\geqslant54$,
显然有,$\dfrac{8a_7}{a_3-a_1}=\dfrac{(2a_4+a_3-2a_2-a_1)a_7}{a_3-a_1}=\dfrac{(2q+1)(a_3-a_1)a_7}{a_3-a_1}=(2q+1)a_7=2a_8+a_7\geqslant54$,
取等号略。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-10 12:54
回复 8# 其妙
那个$a_3>a_1$可以证明的吧

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

 Author| 福州小江 Posted 2013-9-10 13:03
回复 8# 其妙


    又见其妙大法!!建议美特斯邦威直接找你当代言人!!哈哈

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-10 13:08
[困]都没啥区别……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-10 13:10
是的,,没啥区别呀...只是玩玩罢了...我也顺便练练代码...

Mobile version|Discuz Math Forum

2025-6-5 22:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit