Forgot password?
 Create new account
View 2417|Reply 11

[不等式] 2013广东预赛第8题(应该不是水题)

[Copy link]

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

福州小江 Posted at 2013-9-12 00:18:22 |Read mode
Last edited by hbghlyj at 2025-3-19 08:10:42已知实系数一元二次方程 $a x^2+b x+c=0$ 有实根,则使得
\[
(a-b)^2+(b-c)^2+(c-a)^2 \geq r a^2
\]
成立的正实数 $r$ 的最大值为

29

Threads

73

Posts

662

Credits

Credits
662

Show all posts

转化与化归 Posted at 2013-9-12 08:33:41
Last edited by hbghlyj at 2025-3-19 08:11:42发一下标准答案,以引发讨论.
解:$r_\max=\frac{9}{8}$
不妨设 $a=1$,方程 $x^2+b x+c=0$ 的两实根为 $x_1, x_2$
由韦达定理,$b=-x_1-x_2, c=x_1 x_2$.
\[
\begin{aligned}
& \therefore(a-b)^2+(b-c)^2+(c-a)^2=(1-b)^2+(b-c)^2+(c-1)^2 \\
& =\left(1+x_1+x_2\right)^2+\left(x_1+x_2+x_1 x_2\right)^2+\left(x_1 x_2-1\right)^2 \\
& =2\left(x_1^2+x_1+1\right)\left(x_2^2+x_2+1\right) \\
& =2\left[\left(x_1+\frac{1}{2}\right)^2+\frac{3}{4}\right] \cdot\left[\left(x_2+\frac{1}{2}\right)^2+\frac{3}{4}\right] \geq \frac{9}{8} .
\end{aligned}
\]
从而,$r \leq \frac{9}{8}$ ,当 $x_1=x_2=-\frac{1}{2}$ 时等号成立.

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

joatbmon Posted at 2013-9-12 10:14:07
Last edited by joatbmon at 2013-9-12 10:37:00令,$x=\frac{b}{a},y=\frac{c}{a},\frac{r}{2}\leq x^2+y^2-x-y-xy+1,$考查二元函数$f(x,y)= x^2+y^2-x-y-xy+1$易知当$x=y=1$时取到最小值$0$,但不符合约束条件$x^2\geq4y$,由于$f(x,y)$是连续的,所以它的最小值必在边界上取到,也就是说此时$x^2=4y$,代入得$8r\leq x^4-4x^3+12x^2-16x+16=[(x-1)^2+3]^2$,故此$x=1,y=\frac{1}{4},r_{max}=\frac{9}{8}$

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

 Author| 福州小江 Posted at 2013-9-12 10:15:08
回复 2# 转化与化归


    嗯,看过参考答案,发这题想知道能不能不用根来做,直接根据三个系数来解决????

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

 Author| 福州小江 Posted at 2013-9-12 10:17:57
回复 3# joatbmon


    厉害!!!!!!!!!!!!!!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 12:39:15
令,$x=\frac{b}{a},y=\frac{c}{a},\frac{r}{2}\leq x^2+y^2-x-y-xy+1,$考查二元函数$f(x,y)= x^2+y^2-x-y- ...
joatbmon 发表于 2013-9-12 10:14

由于$f(x,y) $是连续的,所以它的最小值必在边界上取到,也就是说此时$x^2=4y
$
(1)万一最小值不在边界呢?
(2)万一边界得到的是最大值呢?
(1)(2)的反例就不想构造了

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

joatbmon Posted at 2013-9-12 13:08:22
Last edited by joatbmon at 2013-9-12 13:35:00这个函数的解析式下可以,只不过我说不清楚理由,只有感觉,没有严格证明。从应试角度讲,不在边界取到,题目给这个边界干嘛呢
擦,码字白码了。
二元连续函数,在整个xoy平面上存在一阶二阶偏导数,最值在边界,极值点(驻点)处取到,显然x,y趋向无穷时,f(x ,y)趋向正无穷,而唯一的驻点(1,1)不在范围内,那么最小值就在边界上取到。不行么?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 13:39:01
回复 7# joatbmon
加了这几条理由,还算成立,

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 21:56:50
好吧,我也来试试:
标答是用韦达定理,借助于两根来完成的,能否不借助两根呢?
由均值不等式可得,$\dfrac3{80}a^2+\dfrac35c^2\geqslant\dfrac3{10}|ac|\geqslant\dfrac3{10}ac$,以及$\dfrac58b^2+\dfrac25(a+c)^2\geqslant |b(a+c)|\geqslant b(a+c)$,

且方程有两实根得到$\dfrac38b^2\geqslant\dfrac38\cdot4ac=\dfrac32ac$,

以上三式相加得:$(\dfrac3{80}+\dfrac25)a^2+\dfrac58b^2+c^2+\dfrac45ac\geqslant\dfrac3{10}ac+ab+bc$,

即:$\dfrac7{16}a^2+\dfrac58b^2+c^2\geqslant ac+ab+bc$,

故$a^2+b^2+c^2-(ac+ab+bc)\geqslant \dfrac9{16}a^2$,即:$\dfrac{a^2+b^2+c^2-ab-bc-ca}{a^2}\geqslant \dfrac9{16}$

于是,$\dfrac{(a-b)^2+(b-c)^2+(c-a)^2}{a^2}=\dfrac{2(a^2+b^2+c^2-ab-bc-ca)}{a^2}\geqslant \dfrac98$,

故$r_\max=\dfrac98$,取等号略。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-9-12 22:20:21
Last edited by realnumber at 2013-9-13 08:23:00回复 3# joatbmon

$x^2\ge 4y$,可以用$x^2-t=4y,t\ge0$替换,然后先消去y,固定x,看作t的2次函数,对对称轴位置分类讨论...,接下来就是x的4次函数(3楼),.....---修改了下

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 22:31:51
回复 10# realnumber

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-9-13 08:18:27
回复 11# 其妙


   我算错了~~~

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list