Forgot password
 Register account
View 2161|Reply 8

答案怎么配的?

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2013-9-12 21:27 |Read mode
图中答案画横线的那段怎么来的?硬凑吗?看到答案倒推倒可以,但怎么想到的呢?
题.png
答案.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-12 21:35
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ 应是熟知的

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-12 21:45
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ 应是熟知的
kuing 发表于 2013-9-12 21:35
$a^2+b^2+c^2-ab-bc-ca=\dfrac12[(a-b)^2+(b-c)^2+(c-a)^2\geqslant0]$也是熟知的

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2013-9-12 21:53
呃……前面那个熟知……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-12 22:00
这个解答其实还是错的,因为 $(x+2y-1)[(x-2y)^2+(2y+1)^2+(x+1)^2]\geqslant0$ 实际上等价于 $(x-2y)^2+(2y+1)^2+(x+1)^2=0$ 或 $x+2y-1\geqslant0$,答案中只看到了后者,没注意到前者,然而前者确实也恰好能得出一个点 $(x,y)=(-1,-1/2)$,而且还不包含在后者中,所以集合 $M$ 中除了 $x+2y-1\geqslant0$ 外还有一个点!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-12 22:07
这个解答其实还是错的,因为 $(x+2y-1)[(x-2y)^2+(2y+1)^2+(x+1)^2]\geqslant0$ 实际上等价于 $(x-2y)^2+(2 ...
kuing 发表于 2013-9-12 22:00
幸好该点在所给答案的圆外!歪打正着

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-12 22:11
噢,这么好运……
那就不用截选项了……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-12 22:11
又一过程错但答案对的一例……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-12 22:33
回复 8# kuing
牛笔!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:46 GMT+8

Powered by Discuz!

Processed in 0.026862 seconds, 25 queries