Forgot password?
 Create new account
View 1994|Reply 8

答案怎么配的?

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2013-9-12 21:27:36 |Read mode
图中答案画横线的那段怎么来的?硬凑吗?看到答案倒推倒可以,但怎么想到的呢?
题.png
答案.png

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-12 21:35:13
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ 应是熟知的

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 21:45:40
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ 应是熟知的
kuing 发表于 2013-9-12 21:35
$a^2+b^2+c^2-ab-bc-ca=\dfrac12[(a-b)^2+(b-c)^2+(c-a)^2\geqslant0]$也是熟知的

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2013-9-12 21:53:11
呃……前面那个熟知……

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-12 22:00:53
这个解答其实还是错的,因为 $(x+2y-1)[(x-2y)^2+(2y+1)^2+(x+1)^2]\geqslant0$ 实际上等价于 $(x-2y)^2+(2y+1)^2+(x+1)^2=0$ 或 $x+2y-1\geqslant0$,答案中只看到了后者,没注意到前者,然而前者确实也恰好能得出一个点 $(x,y)=(-1,-1/2)$,而且还不包含在后者中,所以集合 $M$ 中除了 $x+2y-1\geqslant0$ 外还有一个点!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 22:07:37
这个解答其实还是错的,因为 $(x+2y-1)[(x-2y)^2+(2y+1)^2+(x+1)^2]\geqslant0$ 实际上等价于 $(x-2y)^2+(2 ...
kuing 发表于 2013-9-12 22:00

幸好该点在所给答案的圆外!歪打正着

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-12 22:11:16
噢,这么好运……
那就不用截选项了……

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-12 22:11:52
又一过程错但答案对的一例……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 22:33:28
回复 8# kuing
牛笔!

手机版Mobile version|Leisure Math Forum

2025-4-21 22:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list