Forgot password
 Register account
View 2685|Reply 5

[函数] 整系数三次方程的根的问题

[Copy link]

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2013-9-16 10:29 |Read mode
三次整系数多项式$f(x)=x^3+ax^2+bx-12$的图形与$x$轴交于相异两点$(m,0)$、$(n,0)$,其中$m$、$n$均为正有理数,求$a$的最大值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-16 11:21
首项系数为 $1$,故所有有理根都为整数根,依题意即 $m$, $n$ 都为正整数且 $mn^2=12$(或 $m^2n=12$ 不过没区别),下略。

34

Threads

98

Posts

0

Reputation

Show all posts

original poster hongxian posted 2013-9-16 11:27
回复 2# kuing


    补上
$1+1+12=-a$或$2+2+3=-a$
所以$a=-13$或$a=-7$

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-16 22:26
回复 3# hongxian
解答配合的默契

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2013-9-16 22:33

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-16 22:39
不妨设$f(x)=x^3+ax^2+bx-12=(x-m)^2(x-n)$,其实设$f(x)=x^3+ax^2+bx-12=(x-m)(x-n)^2$也可以,
由于$f(0)=-12$,故得到$m^2n=12$或者$mn^2=12$,我也来默契一下
当然,韦达定理也是可行的。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:35 GMT+8

Powered by Discuz!

Processed in 0.013603 seconds, 22 queries