Forgot password?
 Create new account
View 2552|Reply 5

[函数] 整系数三次方程的根的问题

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2013-9-16 10:29:24 |Read mode
三次整系数多项式$f(x)=x^3+ax^2+bx-12$的图形与$x$轴交于相异两点$(m,0)$、$(n,0)$,其中$m$、$n$均为正有理数,求$a$的最大值。

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-16 11:21:44
首项系数为 $1$,故所有有理根都为整数根,依题意即 $m$, $n$ 都为正整数且 $mn^2=12$(或 $m^2n=12$ 不过没区别),下略。

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

 Author| hongxian Posted at 2013-9-16 11:27:33
回复 2# kuing


    补上
$1+1+12=-a$或$2+2+3=-a$
所以$a=-13$或$a=-7$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-16 22:26:36
回复 3# hongxian
解答配合的默契

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2013-9-16 22:33:51

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-16 22:39:30
不妨设$f(x)=x^3+ax^2+bx-12=(x-m)^2(x-n)$,其实设$f(x)=x^3+ax^2+bx-12=(x-m)(x-n)^2$也可以,
由于$f(0)=-12$,故得到$m^2n=12$或者$mn^2=12$,我也来默契一下
当然,韦达定理也是可行的。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list