Forgot password?
 Create new account
View 2544|Reply 3

[几何] 来自人教论坛的直线动点对圆切线三角形面积最小

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-16 13:55:56 |Read mode
链接:bbs.pep.com.cn/forum.php?mod=viewthread&tid=2878327
发贴ID:liaoweiyi888
点P是直线2x+y=4上一点,PA,PB是圆x^2+y^2=1的两条切线,切点为A ,B,求三角形PAB面积的最小值

QQ截图20130916135630.gif
设 $\odot O$ 的半径为 $R$,连结 $OP$ 交 $AB$ 于 $Q$,过 $O$ 作 $OP'\perp l$ 于 $P'$,过 $P'$ 作 $\odot O$ 的两条切线,切点分别为 $A'$, $B'$,连结 $A'B'$ 交 $OP'$ 于 $Q'$,如图所示。

因为 $OQ\cdot OP=R^2=OQ'\cdot OP'$,所以 $P$, $P'$, $Q'$, $Q$ 四点共圆,而 $\angle Q'P'P=90\du$,故 $\angle Q'QP=90\du$,由此可见,$AB$ 恒过点 $Q'$。

所以 $AB\geqslant A'B'$,又显然有 $PQ\geqslant P'Q'$,故
\[S_{\triangle PAB}=\frac12AB\cdot PQ\geqslant \frac12A'B'\cdot P'Q'=S_{\triangle P'A'B'},\]
当且仅当 $P$ 与 $P'$ 重合时取等。

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2013-9-16 15:57:31
00.jpg
这个图能不能说明$P$离$O$越近,$\triangle APQ$面积越小?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2013-9-16 16:12:00
回复 2# hongxian

能,and nice!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-16 22:33:52
kk这次隐去了极点的知识,而把极点的结论证明了一遍,还和反演有关呢!

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list