Forgot password?
 Register account
View 1801|Reply 8

一道代数题(98年初联12题)

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2014-3-8 18:38 |Read mode
Last edited by 青青子衿 2021-12-4 11:54已知$a^2-a-1=0$,求$a^{18}+323a^{-6}$的值
有没有更广义上的背景!

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-3-8 18:39
没啥意思。就是硬算吧。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2014-6-24 16:32
回复 2# Tesla35
1998年全国初中数学联赛试题12题

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-6-24 19:25
回复 3# 青青子衿
根据带余除法来做

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2019-8-7 23:26
和这道题有关联吗?
\(\,x^2-x-1\,\)是\(\,ax^{17}+bx^{16}+1\,\)的因式
forum.php?mod=viewthread&tid=6455

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-8-8 20:02
$a^2=a+1,a^3=2a+1,a^4=3a+2$
$a^{18}=F_{18}a+F_{17}=2584a+1597$

$b=\frac{1}{a}$
$b^2=-b+1,b^3=2b-1,b^4=-3b+2$
$b^6=(-1)^6 (-F_6 b+ F_5)=-8b+5$

$a^{18}+323b^6=2584(a-b)+1597+1615=5796$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-8-9 08:43
回复 6# tommywong
看到这个第一行的前三式,我终于能理解第二行了,然来就是 Fibonacci  的定义写成了方幂。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-9 14:18
回复 7# isee

这样理解是吗?:设 `a^n=x_na+y_n`,则 `a^{n+1}=x_na^2+y_na=x_n(a+1)+y_na=(x_n+y_n)a+x_n`,所以 `x_{n+1}=x_n+y_n`, `y_{n+1}=x_n`,即 `x_{n+2}=x_{n+1}+x_n`。
也就是有 `x^n\equiv F_nx+F_{n-1}\pmod{x^2-x-1}`,或者 `x^n\equiv (-1)^{n+1}(F_nx-F_{n-1})\pmod{x^2+x-1}`(用于 5# 链接)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-8-10 01:24
一般结论大概是酱紫吧?:

给定常数 `a`, `b`,则对 $n\inN$ 有
\[x^n\equiv A_nx+B_n\pmod{x^2-ax-b},\]其中:
数列 `\{A_n\}` 满足 `A_0=0`, `A_1=1`, `A_{n+2}=aA_{n+1}+bA_n`;
数列 `\{B_n\}` 满足 `B_0=1`, `B_1=0`, `B_{n+2}=aB_{n+1}+bB_n`。

给定常数 `a`, `b`, `c`,则对 $n\inN$ 有
\[x^n\equiv A_nx^2+B_nx+C_n\pmod{x^3-ax^2-bx-c},\]其中:
数列 `\{A_n\}` 满足 `A_0=0`, `A_1=0`, `A_2=1`, `A_{n+3}=aA_{n+2}+bA_{n+1}+cA_n`;
数列 `\{B_n\}` 满足 `B_0=0`, `B_1=1`, `B_2=0`, `B_{n+3}=aB_{n+2}+bB_{n+1}+cB_n`;
数列 `\{C_n\}` 满足 `C_0=1`, `C_1=0`, `C_2=0`, `C_{n+3}=aC_{n+2}+bC_{n+1}+cC_n`。

如此类推…………

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit