|
其妙
Posted 2013-9-25 22:54
Last edited by hbghlyj 2025-3-21 23:32回复 16# Tesla35
数列搜神!
把那边的此题解答复制过来,$\{\dfrac1{a_n+1}\}$的递推是一个二次非线性递推 没有解析的通项公式表达
\[
\begin{aligned}
& a_n=\frac{b_n+1}{b_{n+1}-b_n}, b_n=\frac{a_n+1}{a_{n+1}-a_n} \\
& \Rightarrow a_n+1=\frac{b_{n+1}+1}{\left(b_{n+1}+1\right)-\left(b_n+1\right)}, b_n+1=\frac{a_{n+1}+1}{\left(a_{n+1}+1\right)-\left(a_n+1\right)} . \\
& \Rightarrow b_{n+1}+1=\left(a_n+1\right)\left(b_{n+1}+1\right)-\left(a_n+1\right)\left(b_n+1\right), a_{n+1}+1=\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_n+1\right) . \\
& \Rightarrow\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)=\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_{n+1}+1\right) . \\
& \text { 又: }\left(a_n+1\right)-\left(b_n+1\right)=\frac{b_{n+1}+1}{\left(b_{n+1}+1\right)-\left(b_n+1\right)}-\frac{a_{n+1}+1}{\left(a_{n+1}+1\right)-\left(a_n+1\right)} \\
& =\frac{\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]}=\frac{\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]} . \\
& \text { 另有: }\left(a_n+1\right)\left(b_n+1\right)=\frac{\left(a_{n+1}+1\right) \cdot\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]} .
\end{aligned}
\]
故两式作比有:
\[
\begin{aligned}
& \frac{\left(a_n+1\right)-\left(b_n+1\right)}{\left(a_n+1\right) \cdot\left(b_n+1\right)}=\frac{\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)}{\left(a_{n+1}+1\right) \cdot\left(b_{n+1}+1\right)} \Rightarrow \frac{1}{a_{n+1}+1}-\frac{1}{b_{n+1}+1}=\frac{1}{a_n+1}-\frac{1}{b_n+1} \\
& =\frac{1}{a_1+1}-\frac{1}{b_1+1}=\frac{1}{5}-\frac{1}{30}=\frac{1}{6} . \\
& \therefore \frac{1}{a_n+1}=\frac{\left(b_{n+1}+1\right)-\left(b_n+1\right)}{b_{n+1}+1}=1-\frac{\frac{1}{a_{n+1}+1}-\frac{1}{\frac{1}{6}}-\frac{1}{a_n+1}=\frac{1}{a_n+1}-\frac{1}{a_{n+1}+1}}{\frac{1}{a_n+1}-\frac{1}{6}} \\
& \Rightarrow \frac{1}{a_{n+1}+1}=-\frac{1}{\left(a_n+1\right)^2}+\frac{7}{6\left(a_n+1\right)} \cdot a_1=4 .\left(n \inN^*\right)
\end{aligned}
\] |
|