Forgot password?
 Register account
View 6517|Reply 19

[数列] 一个数列题

[Copy link]

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2013-9-19 19:44 |Read mode
Last edited by hbghlyj 2025-3-21 22:27数列 $\left\{a_n\right\},\left\{b_n\right\}$ 满足 $a_1=1, b_1=2,\left\{\begin{array}{l}a_{n+1}=\frac{1+a_n+a_n b_n}{b_n} \\ b_{n+1}=\frac{1+b_n+a_n b_n}{a_n}\end{array}\right.$ ,则 $\left[a_{2013}\right]=?$($[x]$ 表示不超过实数 $x$ 的最大整数)

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-21 16:27
Last edited by 睡神 2013-9-21 22:47猜测:$\displaystyle\lim_{n\to\infty}a_n=5$
除了不懂,就是装懂

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-21 18:09
猜测:$\lim_{n\to\infty}a_n=5$
睡神 发表于 2013-9-21 16:27
那么$\displaystyle\lim_{n\to\infty}b_n=$??有极限吗?

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-21 20:42
回复 4# 其妙
感觉$b_n$发散…
除了不懂,就是装懂

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-21 20:45
回复 4# 其妙

若 $a_n$ 有极限,则 $b_n$ 必然发散,从 $(a_{n+1}+1)/(a_n+1)=(b_n+1)/b_n$ 就能看出这一点。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-21 23:06
终于可以消掉$b_n$,剩下$a_{n+1}$和$a_n$的递推关系了,可惜是一个分式,分子是$a_n$的二次式,分母是$a_n$的一次式,使用不动点方法得出的根却是无理数,就没有信心往下运算了,运算量太大,我还常常算错,对我的运算不是很自信。

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted 2013-9-21 23:13
回复 7# 其妙
咋么我消去了$b_n$后有$a_{n+2}$出现...求贴一赏...
睡自己的觉,让别人说去...

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2013-9-22 00:07
回复 8# 零定义

我也是, 而且很复杂。。。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-22 02:50
$a_{n+1}+1=\dfrac{1+a_n+b_n+a_nb_n}{b_n}\riff \dfrac{1}{a_{n+1}+1}=\dfrac{b_n}{1+a_n+b_n+a_nb_n}$ ………… ①
$b_{n+1}+1=\dfrac{1+a_n+b_n+a_nb_n}{a_n}\riff \dfrac{1}{b_{n+1}+1}=\dfrac{a_n}{1+a_n+b_n+a_nb_n}$ ………… ②
①-②得:$\dfrac{1}{a_{n+1}+1}-\dfrac{1}{b_{n+1}+1}=\dfrac{1}{a_n+1}-\dfrac{1}{b_n+1}$所以$\dfrac{1}{a_n+1}-\dfrac{1}{b_n+1}=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$
又$a_{n+1}=\dfrac{1+a_n+a_nb_n}{b_n}\riff \dfrac{1}{b_n+1}=1-\dfrac{a_n+1}{a_{n+1}+1}$
所以$\dfrac{1}{a_n+1}+\dfrac{a_n+1}{a_{n+1}+1}=\dfrac{7}{6}$令$c_n=a_n+1$,则$c_{n+1}=\dfrac{6c_n^2}{7c_n-6}$
由$a_{n+1}=\dfrac{1+a_n+a_nb_n}{b_n}=\dfrac{1+a_n}{b_n}+a_n>a_n$,有$c_{n+1}>c_n$
所以$c_{n+1}=\dfrac{6c_n^2}{7c_n-6}>c_n$,解得:$c_n<6$暴力计算前八项可知,$c_8>5$
所以当$n\ge 8$时,有$5<c_n<6$即当$n\ge 8$时,有$4<a_n<5$所以$[a_{2013}]=4$
除了不懂,就是装懂

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-22 02:57
回复 10# 睡神
注:关键步骤由其妙老师指导所得!
除了不懂,就是装懂

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-22 03:08
回复 11# 睡神

次奥!这个倒数作差再裂项太牛笔了!
后面不用看了,就前三步,足够欣赏了

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-22 03:29
回复 12# kuing
关键三步都是其妙提示的…所以说这根本不是我解的…
除了不懂,就是装懂

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-24 19:18
回复 10# 睡神
居然求的是取整符号啊?
我还去求通项了,还有那个数列$\{c_n\}$的不动点法,得到的不动点是$0或6$,等价于数列$\{a_n\}$的不动点$-1$和$5$,我那时怎么算出来是无理数,计算不过关啊!
原来和单调有界数列有极限是有关的,所以用了取整函数。。。。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-9-24 23:32
回复 14# 其妙
额…是其妙老师你对这种菜题不放在眼里而已…
除了不懂,就是装懂

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-9-25 22:45
又一道类似题:
see
tieba.baidu.com/p/2593906937
大家练手
模仿睡神

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-25 22:54
Last edited by hbghlyj 2025-3-21 23:32回复 16# Tesla35
数列搜神!
把那边的此题解答复制过来,$\{\dfrac1{a_n+1}\}$的递推是一个二次非线性递推 没有解析的通项公式表达
\[
\begin{aligned}
& a_n=\frac{b_n+1}{b_{n+1}-b_n}, b_n=\frac{a_n+1}{a_{n+1}-a_n} \\
& \Rightarrow a_n+1=\frac{b_{n+1}+1}{\left(b_{n+1}+1\right)-\left(b_n+1\right)}, b_n+1=\frac{a_{n+1}+1}{\left(a_{n+1}+1\right)-\left(a_n+1\right)} . \\
& \Rightarrow b_{n+1}+1=\left(a_n+1\right)\left(b_{n+1}+1\right)-\left(a_n+1\right)\left(b_n+1\right), a_{n+1}+1=\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_n+1\right) . \\
& \Rightarrow\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)=\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_{n+1}+1\right) . \\
& \text { 又: }\left(a_n+1\right)-\left(b_n+1\right)=\frac{b_{n+1}+1}{\left(b_{n+1}+1\right)-\left(b_n+1\right)}-\frac{a_{n+1}+1}{\left(a_{n+1}+1\right)-\left(a_n+1\right)} \\
& =\frac{\left(b_n+1\right)\left(a_{n+1}+1\right)-\left(a_n+1\right)\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]}=\frac{\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]} . \\
& \text { 另有: }\left(a_n+1\right)\left(b_n+1\right)=\frac{\left(a_{n+1}+1\right) \cdot\left(b_{n+1}+1\right)}{\left[\left(b_{n+1}+1\right)-\left(b_n+1\right)\right] \cdot\left[\left(a_{n+1}+1\right)-\left(a_n+1\right)\right]} .
\end{aligned}
\]
故两式作比有:
\[
\begin{aligned}
& \frac{\left(a_n+1\right)-\left(b_n+1\right)}{\left(a_n+1\right) \cdot\left(b_n+1\right)}=\frac{\left(a_{n+1}+1\right)-\left(b_{n+1}+1\right)}{\left(a_{n+1}+1\right) \cdot\left(b_{n+1}+1\right)} \Rightarrow \frac{1}{a_{n+1}+1}-\frac{1}{b_{n+1}+1}=\frac{1}{a_n+1}-\frac{1}{b_n+1} \\
& =\frac{1}{a_1+1}-\frac{1}{b_1+1}=\frac{1}{5}-\frac{1}{30}=\frac{1}{6} . \\
& \therefore \frac{1}{a_n+1}=\frac{\left(b_{n+1}+1\right)-\left(b_n+1\right)}{b_{n+1}+1}=1-\frac{\frac{1}{a_{n+1}+1}-\frac{1}{\frac{1}{6}}-\frac{1}{a_n+1}=\frac{1}{a_n+1}-\frac{1}{a_{n+1}+1}}{\frac{1}{a_n+1}-\frac{1}{6}} \\
& \Rightarrow \frac{1}{a_{n+1}+1}=-\frac{1}{\left(a_n+1\right)^2}+\frac{7}{6\left(a_n+1\right)} \cdot a_1=4 .\left(n \inN^*\right)
\end{aligned}
\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-9-25 22:56
回复 17# 其妙

之前他到处mark题就是这样用的啊……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-25 22:57
回复 18# kuing
哦,看来我也要mark了

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-9-25 22:58
Last edited by hbghlyj 2025-3-21 23:14回复 17# 其妙

咦?你怎么粘的这个帖子。
应该是下面的图片啊:
QQ截图20130925225427.jpg

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-25 23:38
回复 20# Tesla35
特殊解法与一般解法

Mobile version|Discuz Math Forum

2025-6-4 17:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit