Forgot password?
 Create new account
View 8358|Reply 25

[函数] 来自群的函数不等式 $e^x-\ln x>\sqrt5$

[Copy link]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-3-25 14:12:22 |Read mode
教师-肖月(7868*****)  13:55:53
怎么证明e^x-lnx>sqrt5

令 $f(x)=e^x-\ln x$,则 $f'(x)=e^x-1/x$,显然 $f'(x)$ 在 $(0,+\infty )$ 上单调增,且 $\lim_{x\to 0^+}f'(x)=-\infty$, $\lim_{x\to +\infty }f'(x)=+\infty$,可见存在唯一的 $ x_0\in (0,+\infty )$ 使得 $f'(x_0)=0$,而
\[f'(x_0)=0\iff e^{x_0}=\frac1{x_0}\iff x_0=-\ln x_0,\]

\[f(x)_{\min }=f(x_0)=e^{x_0}-\ln x_0=\frac1{x_0}+x_0,\]
又因为
\[\frac1{x_0}=e^{x_0}>x_0+1\riff x_0<\frac{\sqrt5-1}2, \]
从而
\[f(x)_{\min }=\frac1{x_0}+x_0>\frac2{\sqrt5-1}+\frac{\sqrt5-1}2=\sqrt5.\]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-25 14:34:58
en  ,现在修改为\[e^x-\ln x>2.3\]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2014-3-25 14:43:57
回复 2# realnumber

$\frac{1}{x_0}=e^{x_0}>1+x_0+\frac{x_0^2}{2}$
解得$x_0<0.6$
  精度就够了……

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-25 14:46:50
回复 2# realnumber

不要没事胡乱改题,这样的改法没有意义

这个题正统的做法就是强解出$e^x·x=1$,虽然没有代数解,但我完全可以用牛顿切线不断迭代,求出任意精度的近似解,你改得再接近也能求出来,大不了多迭代几步

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 14:50:11
嗯,这样弄下去无非是对 $x_0$ 做估计。

继续沿用上面的东西,由于 $x_0=-\ln x_0$,故显然 $0<x_0<1$,容易证明对于任意 $x\in(0,1)$ 恒有
\[\ln x>\frac12\left(x-\frac1x\right),\]

\[x_0=-\ln x_0<-\frac12\left(x_0-\frac1{x_0}\right) \riff x_0<\frac1{\sqrt3},\]
从而
\[f(x)_{\min }=\frac1{x_0}+x_0>\sqrt3+\frac1{\sqrt3}\approx 2.3094.\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 20:04:08
最近流行虚设零点法

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 20:05:55
回复 6# 其妙

一点都不虚……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 20:14:30
回复 7# kuing
那是,实际上是存在的,,并且被你压缩到那么小的范围内了,而且又见那两个著名的对数不等式……

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 20:23:22
回复 8# 其妙

那些对数不等式其实我也不是很熟悉,话说你有没有总结过或者说收集过这类不等式?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 20:25:18
回复 9# kuing
没收集过,
只是隐约知道有5个左右这样的不等式(高考里),写出来你都看见过的

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 20:32:40
回复 10# 其妙

好吧,我开贴收集,你来补充

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2014-3-25 22:27:08
回复 11# kuing


    这结果还是有趣味的

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 23:30:05
回复  其妙

好吧,我开贴收集,你来补充
kuing 发表于 2014-3-25 20:32
给我出难题啦,

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 23:47:13
回复 13# 其妙

去吧,贴子我都发好了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 23:49:51
回复 14# kuing
去了,,充数了,

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-26 08:41:15
回复 4# 战巡
娱乐,不是也被你和kuing,555秒了吗?
如果出在模拟卷里,那就不美了.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2014-3-26 13:46:50
回复 16# realnumber


    难道不是导数压轴题里的一步?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-26 16:04:38
回复 17# isee

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2016-10-30 08:02:56
回复  战巡
娱乐,不是也被你和kuing,555秒了吗?
如果出在模拟卷里,那就不美了. ...
realnumber 发表于 2014-3-26 08:41

    今天看到惠州高三二调文科压轴就是将根号5改成了2,真是卡住了很多。。。。

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2017-6-1 08:43:42
回复 3# Tesla35

如何解这个三次不等式?可以帮忙写详细点吗?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list