Forgot password
 Register account
original poster: aishuxue

[函数] 一道导数题

[Copy link]

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2014-6-11 19:53
回复 6# kuing


    改成$60^\circ$估计会麻烦一点,$90^\circ$的先改写一下,
$\exists k_1,k_2\in[-\sqrt2+a,\sqrt2+a]$使$k_1=\dfrac{-1}{k_2}$
(1)若$0\notin (-\sqrt2+a,\sqrt2+a)$显然不合题意;
(2)若$0\in  (-\sqrt2+a,\sqrt2+a)$时
$k_1=\dfrac{-1}{k_2}$,$k_2\in[-\sqrt2+a,0)\cup(0,\sqrt2+a]\Longrightarrow k_1\in\left(-\infty,\dfrac{-1}{\sqrt2+a}\right]\cup\left[\dfrac{-1}{-\sqrt2+a},+\infty\right)$
\begin{cases}
-\sqrt2+a<0<\sqrt2+a\\
\dfrac{-1}{\sqrt2+a}\geqslant-\sqrt2+a或\dfrac{-1}{-\sqrt2+a}\leqslant\sqrt2+a
\end{cases}$\Longrightarrow a\in[-1,1]$

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-6-12 17:16
回复 0# kuing
什么样的函数能有其图像不同两点为切点的切线互相垂直性质?

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-5-2 01:57
青青子衿 发表于 2014-6-12 10:16
什么样的函数能有其图像不同两点为切点的切线互相垂直性质?
即当 $\arctan(f')$ 有两个值相差 $π/2$ 时

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:03 GMT+8

Powered by Discuz!

Processed in 0.012776 seconds, 20 queries