Forgot password?
 Create new account
View 1850|Reply 4

测试

[Copy link]

4

Threads

10

Posts

73

Credits

Credits
73

Show all posts

djjtyq Posted at 2014-4-13 18:46:59 |Read mode
Last edited by djjtyq at 2014-4-13 20:03:00已知数列$\{a_n\}$满足$a_1=1$,$a_n+1=\frac{a_n^2}{a_n+1}(n\in \mathbb{N}^+)$.
证明:$\displaystyle\sum_{k=1}^{n}\frac{a_k}{1+a_k}<\frac{7}{8}$.


$a_n=\frac{1}{2^{2^{n-1}}}$,$\frac{a_n}{1+a_n}=(\dfrac{1}{2})^{2^{n-1}}$,
所以$\displaystyle\sum_{k=1}^{n}\frac{a_k}{1+a_k}=\frac{1}{2}+(\frac{1}{2})^2+(\dfrac{1}{2})^{2^{2}}+\cdots +(\dfrac{1}{2})^{2^{n-1}}$,至此该如何放缩?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-5-16 14:08:38
Last edited by hbghlyj at 2025-3-22 08:28:45\[c^2\]

4

Threads

10

Posts

73

Credits

Credits
73

Show all posts

 Author| djjtyq Posted at 2014-5-25 14:30:24

测试

Last edited by djjtyq at 2014-5-25 18:04:00(1)因为$0<q<1$,所以\[\lim_{n\to\infty}\frac{a_1(1-q^n)}{1-q}=\frac{a_1}{1-q}=9,\]\[\lim_{n\to\infty}\frac{a_1^2(1-q^{2n})}{1-q^2}=\frac{a_1^2}{1-q^2}=\frac{81}{5},\]解得\[a_1=3,q=\frac{2}{3}。\]
(2)因为\[b_i=a_i+(i-1)(2i-1)=(2i-1)a_i-(i-1),\]所以\[S_n=\sum_{i=1}^{n}b_i=[a_1+3a_2+5a_3+\cdots +(2n-1)a_n]-[1+2+3+\cdots +(n-1)],\]令\[S=a_1+3a_2+5a_3+\cdots +(2n-1)a_n,\]则\[qS=a_2+3a_3+\cdots +(2n-3)a_n+(2n-1)a_{n+1},\]两式相减,得\[(1-q)S=2(a_1+a_2+\cdots +a_n)-a_1-(2n-1)a_{n+1},\]因此,\[S=45-(45+18n)(\frac{2}{3})^{n},\]\[S_n=45-(45+18n)(\frac{2}{3})^{n}-\frac{n(n-1)}{2},\]于是,\[\lim_{n\to\infty}\frac{S_n}{n^m}=\lim_{n\to\infty}[\frac{45}{n^m}-\frac{45+18n}{n^m}(\frac{2}{3})^{n}-\frac{n(n-1)}{2n^m}],\]当$m=2$时,\[\lim_{n\to\infty}\frac{S_n}{n^2}=\lim_{n\to\infty}[\frac{45}{n^2}-\frac{45+18n}{n^2}(\frac{2}{3})^{n}+\frac{1}{2n}-\frac{1}{2}]=-\frac{1}{2},\]当$m>2$时,\[\lim_{n\to\infty}\frac{S_n}{n^m}=0,\]综上所述,当且仅当$m=2$时,$\displaystyle \lim_{n\to\infty}\frac{S_n}{n^m}$存在且不为零。

4

Threads

10

Posts

73

Credits

Credits
73

Show all posts

 Author| djjtyq Posted at 2014-5-25 15:53:35
回复 1# djjtyq
最后一行那个表达式怎么样不用行间公式的格式才会显示成\[\lim_{n\to\infty}\frac{S_n}{n^m}。\]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-5-25 16:15:13
回复 2# djjtyq

\$\displaystyle \lim_{n\to\infty}\frac{S_n}{n^m}\$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list