Forgot password?
 Create new account
View 2158|Reply 7

[不等式] $\displaystyle(1+\frac{1}{2!})(1+\frac{1}{3!})...(1+\frac{1}{n!})$

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-4-24 19:46:45 |Read mode
Last edited by tommywong at 2014-4-24 20:26:00证明:
$e-1<lim_{n\to\infty}\displaystyle(1+\frac{1}{2!})(1+\frac{1}{3!})...(1+\frac{1}{n!})<2$
(左边已被kuing证明)
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-24 20:54:12
回复 1# tommywong
如何证明的呀?

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-4-24 21:00:08
回复 1# tommywong

我在群里写错了啊

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-4-24 21:13:22
右边,保留第一项用均值
\[\left( 1+\frac1{2!} \right)\left( 1+\frac1{3!} \right)\cdots \left( 1+\frac1{n!} \right)<\frac32\left( 1+\frac{\frac1{3!}+\frac1{4!}+\cdots +\frac1{n!}}{n-2} \right)^{n-2}<\frac32\left( 1+\frac{e-\frac1{0!}-\frac1{1!}-\frac1{2!}}{n-2} \right)^{n-2}<\frac32e^{e-5/2},\]
右边的值约为1.8659

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-24 21:16:11
回复 4# kuing
在办公室,不敢开qq,尤其不敢开粉丝群,你懂的,

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-4-24 21:16:16
左边是多余的,$(1+1/2!)(1+1/3!)=7/4>e-1$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

 Author| tommywong Posted at 2014-4-24 21:44:37
$\displaystyle(\frac{3}{2})(\frac{7}{6})(\frac{25}{24})(1+e-1-1-\frac{1}{2}-\frac{1}{6}-\frac{1}{24})\approx 1.84105$

$\displaystyle(\frac{3}{2})(\frac{7}{6})(\frac{25}{24})e^{e-1-1-\frac{1}{2}-\frac{1}{6}-\frac{1}{24}}\approx 1.84114$

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-25 07:36:51
Last edited by realnumber at 2014-4-25 08:41:00右边不等式证明,保留2项,第三项开始利用$\ln{(1+x)}\le x$放缩
只需要证明
\[\ln{\frac{3}{2}}+\ln{\frac{7}{6}}+\frac{1}{2\times{3}\times{4}}+\frac{1}{3\times{4}\times{5}}+\cdots+\frac{1}{(n-2)\times{(n-1)}\times{n}}\le{\ln{2}}\]
\[而\frac{1}{2\times{3}\times{4}}+\frac{1}{3\times{4}\times{5}}+\cdots+\frac{1}{(n-2)\times{(n-1)}\times{n}}=\frac{1}{2}(\frac{1}{2\times3}-\frac{1}{(n-1)n})<\frac{1}{12}\]
\[那么只需要证明\ln{\frac{3}{2}}+\ln{\frac{7}{6}}+\frac{1}{12}<\ln2\]
经过计算器验证$\ln{\frac{8}{7}}-\frac{1}{12}=0.05019\cdots$成立.
或利用这个帖子的3楼kuing.cjhb.site/forum.php?mod=viewthread& … 7&extra=page%3D1
$\ln x\geqslant\dfrac{2(x-1)}{x+1}(x\geqslant1)$

手机版Mobile version|Leisure Math Forum

2025-4-23 06:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list