Forgot password
 Register account
View 13333|Reply 38

[函数] 大家都来写一些关于 $\ln x$ 的不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-25 21:03 |Read mode
我先来写两个,今天用到的
\begin{align*}
\ln x&\leqslant x-1,\forall x>0,\\
\ln x&\geqslant\frac12\left(x-\frac1x\right),\forall 1\geqslant x>0 \text{($x>1$ 时反向)},
\end{align*}

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-3-25 21:16
和第二个有点类似的
\[\ln x\geqslant 1-\frac1x, \forall x>0,\]
但其实它和第一个等价

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-3-25 23:46
为了不食言,也为了凑数,所以重复了上面的一些不等式,甚至是一些等价的不等式,但是在导数压轴题的最后一问数列的放缩的时候可能会用到的不等式:
请检查有无输入错误、推导错误等
1、$\ln(x+1)\leqslant x(x>-1)$

2、$e^x\geqslant x+1(x\in R)$

3、$\ln x\geqslant\dfrac{2(x-1)}{x+1}(x\geqslant1)$

4、$\ln x\leqslant\dfrac{2(x-1)}{x+1}(0<x\leqslant1)$

5、$\ln x\leqslant\dfrac{1}{2}(x-\dfrac1x)(x\geqslant1)$

6、$\ln x\geqslant\dfrac{1}{2}(x-\dfrac1x)(0<x\leqslant1)$

7、$\ln (1+x)\geqslant x-\dfrac{x^2}{2}(x\geqslant0)$

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-3-26 01:28
thanks 大家继续啊

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2014-3-26 01:50
回复 1# kuing

泰勒展开式就可以提供很多这方面的东西啊........

\[\ln(1+x)<\sum_{k=1}^n(-1)^{k-1}\frac{x^k}{k},  -1<x<0\]
\[\ln(1+x)\le \sum_{k=1}^{2n+1}(-1)^{k-1}\frac{x^k}{k},  x\ge 0\]
\[\ln(1+x)\ge \sum_{k=1}^{2n}(-1)^{k-1}\frac{x^k}{k},  x\ge 0\]

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-3-26 02:21
回复 5# 战巡


分式的也整整看

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-3-26 07:59
Last edited by realnumber 2014-3-26 08:20$y=\ln{x}$在$x=x_0$处的切线,$y=\frac{1}{x_0}(x-x_0)+\ln{x_0}$,则有$\frac{1}{x_0}(x-x_0)+\ln{x_0}\ge \ln{x}$.

即为$\frac{x}{x_0}-1\ge \ln{x}-\ln{x_0}=\ln{\frac{x}{x_0}}$,也即$t-1\ge \ln t,其中t=\frac{x}{x_0}$.

也是由切线得到,$\ln{\ln{x}}\le\frac{x}{e}-1$.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-3-26 10:48
变式:$\ln x < \dfrac {x-1}{\sqrt x},x>1$

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-3-26 12:42
变式:$\ln x < \dfrac {x-1}{\sqrt x},x>1$
isee 发表于 2014-3-26 10:48
嗯,这个跟1#第二个等价。曾经在这里用过 kkkkuingggg.haotui.com/viewthread.php?tid=760#pid3991

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-20 13:11
回复 3# 其妙
这里有关于第5条的一个应用:“对数—几何平均不等式”(海盗)
kkkkuingggg.haotui.com/viewthread.php?tid=354

还有,关于第4条的一个应用(kuing):
kkkkuingggg.haotui.com/thread-314-1-1.html

45

Threads

51

Posts

0

Reputation

Show all posts

等待hxh posted 2014-4-24 14:33
1.jpg 我今天看到了一个更水的题

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-4-24 14:34
回复 11# 等待hxh

你回错贴了

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-27 15:37
这里还有些关于$\ln x$的不等式:blog.sina.com.cn/s/blog_54df069f0101jp07.html(绵阳三诊)
\[\ln t\leqslant\dfrac{t-1}{\sqrt t}{\kern 4pt}(t\geqslant1)\]
若记$\sqrt t=u\geqslant1$,则$2\ln u\leqslant\dfrac{u^2-1}{u}=u-\dfrac{1}{u}$,即:\[\ln u\leqslant\dfrac12(u-\dfrac{1}{u}) {\kern 5pt}      (u\geqslant 1)\]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-27 15:43
不等式$\ln (1+x)\geqslant x-\dfrac{x^2}{2}(x\geqslant0)$的一个应用(2012天津):
blog.sina.com.cn/s/blog_54df069f0101jp07.html(文末2012天津)
妙不可言,不明其妙,不着一字,各释其妙!

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-4-27 15:53
thinks, goon

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-27 16:03
回复 15# kuing

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-29 23:34
妙不可言,不明其妙,不着一字,各释其妙!

3

Threads

8

Posts

0

Reputation

Show all posts

链剑心 posted 2014-5-1 05:11
$\ln(x)>0$

461

Threads

959

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-5-1 09:18
回复 18# 链剑心
不是要解不等式,而是证明不等式!

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-5-4 09:31
模拟卷上一题目.
$f(x)=x\ln x$,0<a<b,求证:$a\ln a+b\ln b<b-a+(a+b)\ln{\frac{a+b}{2}}$.
证明:设$x=\frac{b-a}{2},y=\frac{b+a}{2},y>x>0$,
那么所证明不等式化为
\[(y-x)\ln{(y-x)}+(y+x)\ln{(y+x)}<2x+2y\ln{(y)}\]
利用$\ln(1+t)\le t$,可得$\ln{(y-x)}=\ln (y(1-\frac{x}{y}))<\ln y-\frac{x}{y},\ln{(y+x)}<\ln y+\frac{x}{y}$.以下略.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:43 GMT+8

Powered by Discuz!

Processed in 0.013917 seconds, 27 queries