Forgot password?
 Create new account
View 12907|Reply 38

[函数] 大家都来写一些关于 $\ln x$ 的不等式

[Copy link]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-3-25 21:03:32 |Read mode
我先来写两个,今天用到的
\begin{align*}
\ln x&\leqslant x-1,\forall x>0,\\
\ln x&\geqslant\frac12\left(x-\frac1x\right),\forall 1\geqslant x>0 \text{($x>1$ 时反向)},
\end{align*}

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-25 21:16:12
和第二个有点类似的
\[\ln x\geqslant 1-\frac1x, \forall x>0,\]
但其实它和第一个等价

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-25 23:46:54
为了不食言,也为了凑数,所以重复了上面的一些不等式,甚至是一些等价的不等式,但是在导数压轴题的最后一问数列的放缩的时候可能会用到的不等式:
请检查有无输入错误、推导错误等
1、$\ln(x+1)\leqslant x(x>-1)$

2、$e^x\geqslant x+1(x\in R)$

3、$\ln x\geqslant\dfrac{2(x-1)}{x+1}(x\geqslant1)$

4、$\ln x\leqslant\dfrac{2(x-1)}{x+1}(0<x\leqslant1)$

5、$\ln x\leqslant\dfrac{1}{2}(x-\dfrac1x)(x\geqslant1)$

6、$\ln x\geqslant\dfrac{1}{2}(x-\dfrac1x)(0<x\leqslant1)$

7、$\ln (1+x)\geqslant x-\dfrac{x^2}{2}(x\geqslant0)$

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-26 01:28:20
thanks 大家继续啊

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-26 01:50:14
回复 1# kuing

泰勒展开式就可以提供很多这方面的东西啊........

\[\ln(1+x)<\sum_{k=1}^n(-1)^{k-1}\frac{x^k}{k},  -1<x<0\]
\[\ln(1+x)\le \sum_{k=1}^{2n+1}(-1)^{k-1}\frac{x^k}{k},  x\ge 0\]
\[\ln(1+x)\ge \sum_{k=1}^{2n}(-1)^{k-1}\frac{x^k}{k},  x\ge 0\]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-26 02:21:22
回复 5# 战巡


分式的也整整看

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-26 07:59:24
Last edited by realnumber at 2014-3-26 08:20:00$y=\ln{x}$在$x=x_0$处的切线,$y=\frac{1}{x_0}(x-x_0)+\ln{x_0}$,则有$\frac{1}{x_0}(x-x_0)+\ln{x_0}\ge \ln{x}$.

即为$\frac{x}{x_0}-1\ge \ln{x}-\ln{x_0}=\ln{\frac{x}{x_0}}$,也即$t-1\ge \ln t,其中t=\frac{x}{x_0}$.

也是由切线得到,$\ln{\ln{x}}\le\frac{x}{e}-1$.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2014-3-26 10:48:11
变式:$\ln x < \dfrac {x-1}{\sqrt x},x>1$

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-3-26 12:42:31
变式:$\ln x < \dfrac {x-1}{\sqrt x},x>1$
isee 发表于 2014-3-26 10:48

嗯,这个跟1#第二个等价。曾经在这里用过 kkkkuingggg.haotui.com/viewthread.php?tid=760&page=1#pid3991

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-20 13:11:09
回复 3# 其妙
这里有关于第5条的一个应用:“对数—几何平均不等式”(海盗)
kkkkuingggg.haotui.com/viewthread.php?tid=354

还有,关于第4条的一个应用(kuing):
kkkkuingggg.haotui.com/thread-314-1-1.html

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted at 2014-4-24 14:33:56
1.jpg 我今天看到了一个更水的题

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-4-24 14:34:33
回复 11# 等待hxh

你回错贴了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-27 15:37:15
这里还有些关于$\ln x$的不等式:blog.sina.com.cn/s/blog_54df069f0101jp07.html(绵阳三诊)
\[\ln t\leqslant\dfrac{t-1}{\sqrt t}{\kern 4pt}(t\geqslant1)\]
若记$\sqrt t=u\geqslant1$,则$2\ln u\leqslant\dfrac{u^2-1}{u}=u-\dfrac{1}{u}$,即:\[\ln u\leqslant\dfrac12(u-\dfrac{1}{u}) {\kern 5pt}      (u\geqslant 1)\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-27 15:43:11
不等式$\ln (1+x)\geqslant x-\dfrac{x^2}{2}(x\geqslant0)$的一个应用(2012天津):
blog.sina.com.cn/s/blog_54df069f0101jp07.html(文末2012天津)
妙不可言,不明其妙,不着一字,各释其妙!

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-4-27 15:53:00
thinks, goon

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-27 16:03:56
回复 15# kuing

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-29 23:34:24
妙不可言,不明其妙,不着一字,各释其妙!

4

Threads

8

Posts

63

Credits

Credits
63

Show all posts

链剑心 Posted at 2014-5-1 05:11:00
$\ln(x)>0$

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-5-1 09:18:31
回复 18# 链剑心
不是要解不等式,而是证明不等式!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-4 09:31:00
模拟卷上一题目.
$f(x)=x\ln x$,0<a<b,求证:$a\ln a+b\ln b<b-a+(a+b)\ln{\frac{a+b}{2}}$.
证明:设$x=\frac{b-a}{2},y=\frac{b+a}{2},y>x>0$,
那么所证明不等式化为
\[(y-x)\ln{(y-x)}+(y+x)\ln{(y+x)}<2x+2y\ln{(y)}\]
利用$\ln(1+t)\le t$,可得$\ln{(y-x)}=\ln (y(1-\frac{x}{y}))<\ln y-\frac{x}{y},\ln{(y+x)}<\ln y+\frac{x}{y}$.以下略.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list