Forgot password?
 Create new account
View 2422|Reply 11

求解多元高次方程

[Copy link]

5

Threads

8

Posts

71

Credits

Credits
71

Show all posts

271828 Posted at 2014-4-26 22:38:03 |Read mode
11111111.jpg
123

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-26 22:43:05
回复 1# 271828
交给mmc搞定,我不会用,kk或战巡可来搞定它
感觉是就是三阶线性递推数列吧,没去仔细想,

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-4-27 01:08:12
回复 1# 271828

21.jpg

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-4-27 03:10:37
其实我看到最后一个方程第二项是3次方
I am majia of kuing

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-4-27 12:29:22
20140427122455.jpg
I am majia of kuing

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-27 12:30:46
看来是爪机的显示问题,电脑看又是5次方……

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-27 13:04:47
回复  271828
交给mmc搞定,我不会用,kk或战巡可来搞定它
感觉是就是三阶线性递推数列吧,没去仔细想,
其妙 发表于 2014-4-26 22:43

你的感觉是对的。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-27 13:28:14
$\newcommand\led[1]{\left\{\begin{aligned}
#1
\end{aligned}\right.}$
设数列 $\{a_n\}$ 满足 $a_{n+3}=sa_{n+2}+ta_{n+1}+ua_n$ 且 $a_0=2$, $a_1=3$, $a_2=4$, $a_3=6$, $a_4=12$, $a_5=32$,则应有
\[
\led{
6&=4s+3t+2u, \\
12&=6s+4t+3u, \\
32&=12s+6t+4u,
}
\]
解得 $s=5$, $t=-6$, $u=2$,于是
\[a_{n+3}=5a_{n+2}-6a_{n+1}+2a_n,\]

\[v^3=5v^2-6v+2,\]
解得
\[v_1=1,v_2=2-\sqrt2,v_3=2+\sqrt2,\]
则由特征方程的理论知 $a_n$ 的通项必能写成
\[a_n=\lambda_1v_1^n+\lambda_2v_2^n+\lambda_3v_3^n,\]
于是应有
\[
\led{
2&=\lambda_1+\lambda_2+\lambda_3, \\
3&=\lambda_1v_1+\lambda_2v_2+\lambda_3v_3, \\
4&=\lambda_1v_1^2+\lambda_2v_2^2+\lambda_3v_3^2,
}
\]
解得
\[\lambda_1=4,\lambda_2=-1-\frac3{2\sqrt2},\lambda_3=-1+\frac3{2\sqrt2},\]
于是我们得到
\[
\led{
\lambda_1+\lambda_2+\lambda_3&=2,\\
\lambda_1v_1+\lambda_2v_2+\lambda_3v_3&=3,\\
\lambda_1v_1^2+\lambda_2v_2^2+\lambda_3v_3^2&=4,\\
\lambda_1v_1^3+\lambda_2v_2^3+\lambda_3v_3^3&=6,\\
\lambda_1v_1^4+\lambda_2v_2^4+\lambda_3v_3^4&=12,\\
\lambda_1v_1^5+\lambda_2v_2^5+\lambda_3v_3^5&=32,
}
\]
与原方程组对比,可知原方程组的解至少有如下六组
\[
\led{
x&=\lambda_1,\\
y&=\lambda_2,\\
z&=\lambda_3,\\
p&=v_1,\\
q&=v_2,\\
r&=v_3,
}
\quad
\led{
x&=\lambda_1,\\
y&=\lambda_3,\\
z&=\lambda_2,\\
p&=v_1,\\
q&=v_3,\\
r&=v_2,
}
\quad
\led{
x&=\lambda_2,\\
y&=\lambda_1,\\
z&=\lambda_3,\\
p&=v_2,\\
q&=v_1,\\
r&=v_3,
}
\quad
\led{
x&=\lambda_2,\\
y&=\lambda_3,\\
z&=\lambda_1,\\
p&=v_2,\\
q&=v_3,\\
r&=v_1,
}
\quad
\led{
x&=\lambda_3,\\
y&=\lambda_1,\\
z&=\lambda_2,\\
p&=v_3,\\
q&=v_1,\\
r&=v_2,
}
\quad
\led{
x&=\lambda_3,\\
y&=\lambda_2,\\
z&=\lambda_1,\\
p&=v_3,\\
q&=v_2,\\
r&=v_1,
}
\]
又因为原方程组是六元六次方程组,既然有此六组解,它们就是全部解。

5

Threads

8

Posts

71

Credits

Credits
71

Show all posts

 Author| 271828 Posted at 2014-4-27 14:59:00
解的漂亮!

只是,这种题目,是不是都可以构造递推数列呢?

如果a,b,c,d,e,f的值改变一下呢?

也有可能无解或者也可能构造不了这样的数列吧?

另外,为什么是构造相邻四项的递推关系,而不是三项或者五项呢?
怎么看出来的呢?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-27 15:13:54
回复 9# 271828

$a$, $b$, $c$, $d$, $e$, $f$ 改变一下应该也可以,只要后面特征根是三个不同的数应该就照样可以做,只不过数据可能复杂很多,解三次方程时估计要用卡当公式。

至于构造相邻四项递推,是因为原方程组的 $p$, $q$, $r$ 是特征根,也就是是个三次方程,因此就是三阶齐次线性递推数列了。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-27 15:24:48
回复 8# kuing
牛笔!这么复杂都解的出来呀!我怕运算,还带根号呢!

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-27 15:52:13
回复 11# 其妙

抄上面战巡的数据不就好了我敢肯定结果没错

手机版Mobile version|Leisure Math Forum

2025-4-22 08:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list