Forgot password?
 Create new account
View 1790|Reply 8

算子$Af(x)=f'(x)$,$Bf(x)=xf(x)$,求算子$AB-BA=$?

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-17 19:26:39 |Read mode
在可导函数空间$P[x]$中,定义算子$A$、$B$,使得$Af(x)=f'(x)$,$Bf(x)=xf(x)$,求算子$AB-BA=$?
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-5-17 19:45:49
这就是不变算子吗?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-16 20:37:55
这就是不变算子吗?
tommywong 发表于 2014-5-17 19:45

,很吓唬人呀!
过程呢?

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-6-16 21:49:38
回复 3# 其妙

我还没学算子,只懂得把f(x)放进去
$(AB-BA)f(x)=ABf(x)-BAf(x)=A(xf(x))-Bf'(x)=f(x)+xf'(x)-xf'(x)=f(x)$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-17 14:34:50
回复 4# tommywong
,我是说这道题很吓唬人呀!其实并不难!

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-6-17 16:37:51
妄想中......

$C=\begin{pmatrix} 0 & diag(-n,-n+1,...,n) \\ 0 & 0 \end{pmatrix}  \begin{pmatrix} 0 & 0 \\ E_{2n+1} & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ E_{2n+1} & 0 \end{pmatrix} \begin{pmatrix} 0 & diag(-n,-n+1,...,n) \\ 0 & 0 \end{pmatrix}$

$=\begin{pmatrix} diag(-n,-n+1,...,n) & 0 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 0 \\ 0 & diag(-n,-n+1,...,n) \end{pmatrix}=\begin{pmatrix} -n & 0 & 0 \\ 0 & E_{2n} & 0 \\ 0 & 0 & -n \end{pmatrix}$

$AB-BA=E_{2n}$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-17 18:37:27
回复 6# tommywong
不懂,

3

Threads

59

Posts

403

Credits

Credits
403

Show all posts

caijinzhi Posted at 2014-7-1 21:23:03
为什么其妙老师这么喜欢算子?建议老师多出点仿射几何类的算子,让学生开开眼界。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-7-1 22:50:18
为什么其妙老师这么喜欢算子?建议老师多出点仿射几何类的算子,让学生开开眼界。 ...
caijinzhi 发表于 2014-7-1 21:23

这个…… ,还是你来出吧,这是因为以前拼命的学了一下泛函(尼玛太难学了)……

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list