Forgot password?
 Create new account
View 2552|Reply 5

[几何] 来自一个群里的向量题。。。。

[Copy link]

6

Threads

19

Posts

159

Credits

Credits
159

Show all posts

yuzi Posted at 2013-9-22 18:58:08 |Read mode
Last edited by hbghlyj at 2025-3-10 19:49:48若三个不同的点$A,B,C$满足$(\vv{AB}\cdot \vv{BC}):(\vv{BC}\cdot \vv{CA}):(\vv{CA}\cdot \vv{AB})=3:4:(-5)$,则这三点(   )
A.组成锐角三角形
B.组成直角三角形
C.组成钝角三角形        
D.在同一条直线上


我想问的是,这个比值满足什么条件,可以保证三点构成三角形,或共线?

6

Threads

19

Posts

159

Credits

Credits
159

Show all posts

 Author| yuzi Posted at 2013-9-22 19:22:15
Last edited by yuzi at 2013-9-22 22:13:00若三个不同的点$A,B,C$满足$(\vv{AB}\cdot \vv{BC}):(\vv{BC}\cdot \vv{CA}):(\vv{CA}\cdot \vv{AB})=3:4:(-5)$,则这三点(   )
A.组成锐角三角形
B.组成直角三角形
C.组成钝角三角形        
D.在同一条直线上

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-22 20:00:22
回复 2# yuzi

中间的 \$ 可以去掉,直接在整个式子前后加 \$ 即可。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-22 20:42:18
如果 $A$, $B$, $C$ 三点共线,若 $B$ 在 $A$, $C$ 之间,设 $AB=x>0$, $BC=y>0$,则
\begin{align*}
\bigl(\vv{BC}\cdot\vv{CA}\bigr) :\bigl(\vv{CA}\cdot\vv{AB}\bigr) :\bigl(\vv{AB}\cdot\vv{BC}\bigr) &=\bigl(-y(x+y)\bigr):\bigl(-(x+y)x\bigr):(xy) \\
&=\left( 1+\frac yx \right):\left( 1+\frac xy \right):(-1),
\end{align*}
所以,若 $\bigl(\vv{BC}\cdot\vv{CA}\bigr):\bigl(\vv{CA}\cdot\vv{AB}\bigr):\bigl(\vv{AB}\cdot\vv{BC}\bigr) =p:q:r$ 且 $A$, $B$, $C$ 三点共线,则 $p$, $q$, $r$ 不能全部同号,而如果将比例化简为 $p$, $q>0$, $r=-1$,则还需要 $p$, $q>1$ 且 $(p-1)(q-1)=1\iff pq=p+q$。

如果 $A$, $B$, $C$ 构成三角形,设对应边长为 $a$, $b$, $c$,则
\begin{align*}
&\bigl(\vv{BC}\cdot\vv{CA}\bigr) :\bigl(\vv{CA}\cdot\vv{AB}\bigr) :\bigl(\vv{AB}\cdot\vv{BC}\bigr) = p:q:r \\
\iff{}&ab\cos C:bc\cos A:ca\cos B=p:q:r \\
\iff{}&(a^2+b^2-c^2):(b^2+c^2-a^2):(c^2+a^2-b^2)=p:q:r \\
\iff{}&b^2:c^2:a^2=(p+q):(q+r):(r+p),
\end{align*}
所以此时 $p+q$, $q+r$, $r+p$ 三者同号,如果都为正,那么 $\sqrt{p+q}$, $\sqrt{q+r}$, $\sqrt{r+p}$ 要构成三角形。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-22 20:52:27
由楼上的结论可见,1#的比值不存在。

6

Threads

19

Posts

159

Credits

Credits
159

Show all posts

 Author| yuzi Posted at 2013-9-22 22:15:54
回复 3# kuing


    嗯嗯。。。菜鸟一个

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list