Forgot password?
 Create new account
View 1699|Reply 5

$\displaystyle \int_0^{+\infty} \frac{x}{e^x+1} dx$

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-6-6 12:53:19 |Read mode
如题
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-6-6 15:10:42
Last edited by 战巡 at 2014-6-6 17:22:00回复 1# tommywong


小意思......
先换元$y=e^{-x}$,得
\[\int_0^{+\infty}\frac{x}{e^x+1}dx=\int_0^1\frac{-\ln(y)}{1+y}dy\]
再换重积分
\[\int_0^1\frac{-\ln(y)}{1+y}dy=\int_0^1dy\int_y^1\frac{dz}{z(1+y)}\]
调换顺序
\[=\int_0^1\frac{\ln(1+z)}{z}dz\]
\[=\int_0^1\sum_{k=0}^\infty(-1)^{k}\frac{z^k}{k+1}=\sum_{k=0}^\infty\frac{(-1)^{k}}{(k+1)^2}=\frac{\pi^2}{12}\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-6-6 16:10:01
回复 2# 战巡
,换元,无穷积分变为正常积分,再变为二重积分,然后又变为一重积分,最后用级数收官!妙!

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

 Author| tommywong Posted at 2014-6-9 21:00:07
转自:bbs.emath.ac.cn/thread-5595-1-1.html

$\displaystyle A=\int_0^{+\infty} \frac{x}{e^x-1} dx,B=\int_0^{+\infty} \frac{x}{e^x+1} dx$

$\displaystyle B=\int_0^{+\infty} \frac{x}{e^x+1} dx=\int_0^{+\infty} \frac{x(e^x-1)}{e^{2x}-1} dx=\int_0^{+\infty} \frac{xe^x}{e^{2x}-1} dx - \int_0^{+\infty} \frac{x}{e^{2x}-1} dx$

$\displaystyle =\int_0^{+\infty} \frac{xe^x}{e^{2x}-1} dx - \frac{1}{4} A$

$\displaystyle A+B=\int_0^{+\infty} \frac{x}{e^x-1} dx+\int_0^{+\infty} \frac{x}{e^x+1} dx=2\int_0^{+\infty} \frac{xe^x}{e^{2x}-1} dx=\frac{1}{2}A+2B$

$\displaystyle B=\frac{1}{2}A=\frac{1}{2}\zeta(2)\Gamma(2)=\frac{\pi^2}{12}$

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-8-24 12:40:23
转自:
$\displaystyle A=\int_0^{+\infty} \frac{x}{e^x-1} dx$
...
tommywong 发表于 2014-6-9 21:00

欧拉又发现了伯努利数的生成函数(generating function):
\[ \frac{x}{e^x-1} =\sum_{k=0}^{+\infty}\frac{B_k}{k!}x^k\]
$\displaystyle A=\int_0^{+\infty} \frac{x}{e^x-1} dx=\int_0^{+\infty}\sum_{k=0}^{+\infty}\frac{B_k}{k!}x^k$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-9-4 18:22:51
该帖子已被页面这个怎么积 - 超理论坛引用
其中,Bose-Einstein integral(波色-爱因斯坦积分)为:
\(
\color{red}{
\begin{split}
&\displaystyle I(p)\\
\\
\end{split}
\begin{split}
&\begin{gathered}
=\int_0^{+\infty} \frac{x^{p-1}}{e^x-1} dx\qquad p>1.\\
\end{gathered}\\
&=\zeta(p)\Gamma(p)&
\end{split}
}
\\
\displaystyle \color{blue}{I(2)=\int_0^{+\infty} \frac{x}{e^x-1} dx=\zeta(2)\Gamma(2)=\frac{\pi^2}{6}}\\
\)

链接:
http://kuing.orzweb.net/viewthread.php?tid=2801&extra=page%3D4
http://bbs.emath.ac.cn/thread-5595-1-1.html

Appendix to IV.6: Bose-Einstein Integrals:
http://www.physik.uni-regensburg.de/forschung/fabian/pages/mainframes/teaching/teaching_files/files%20of%20mf_statistical_physics/BE_integrals.pdf

手机版Mobile version|Leisure Math Forum

2025-4-20 22:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list