Forgot password?
 Create new account
View 2348|Reply 10

[不等式] $a_i\in[-2,2]$,且$\sum{a_k}=0$,求$\sum{a_k^3}$的最大值

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-6-20 19:36:55 |Read mode
已知$a_i\in[-2,2],i=1,2,\cdots,2014$,且$a_1+a_2+\cdots+a_{2014}=0$,求$a_1^3+a_2^3+\cdots+a_{2014}^3$的最大值,
顺便问一下,有没有最小值?
妙不可言,不明其妙,不着一字,各释其妙!

66

Threads

415

Posts

3569

Credits

Credits
3569

Show all posts

Tesla35 Posted at 2014-6-20 20:00:16
这不是老题吗?差评!!

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-6-20 20:04:10
这不是老题吗?差评!!
Tesla35 发表于 2014-6-20 20:00

这题跟下标的数字关系极大,上次那个是2013

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-20 20:04:23
回复 2# Tesla35
没图,不是差评!

66

Threads

415

Posts

3569

Credits

Credits
3569

Show all posts

Tesla35 Posted at 2014-6-20 20:23:36
回复 3# kuing

    手机上论坛真是不方便!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-20 20:35:07
回复 5# Tesla35
对,所以你的解答迟迟传不上来!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-20 20:37:19
回复 3# kuing
原来如此?那就改为2013吧,
已知$a_i\in[-2,2],i=1,2,\cdots,2013$,且$a_1+a_2+\cdots+a_{2013}=0$,求$a_1^3+a_2^3+\cdots+a_{2013}^3$的最大值,

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-6-20 20:42:50
回复  kuing
原来如此?那就改为2013吧,
已知$a_i\in[-2,2],i=1,2,\cdots,2013$,且$a_1+a_2+\cdots+ ...
其妙 发表于 2014-6-20 20:37

那就 kuing.cjhb.site/forum.php?mod=viewthread&tid=189

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-20 20:54:58
回复 8# kuing
还不能随便乱出呀!  以下是引用kuing的解法:
解:当$ x⩽2 $ 时,由$ 3x+2−x ^3 =(2−x)(x+1)^ 2 ⩾0 $ 得到$ x^ 3 ⩽3x+2$ ,故

$a _1^3 +a_2^ 3 +⋯+a_{2013}^ 3 ⩽3(a_ 1 +a_ 2 +⋯+a_{ 2013} )+2⋅2013=4026$,

当$ a_ 1 =a _2 =⋯=a _{671} =2$  且 $a_{ 672} =a_{ 673 }=⋯=a_{ 2013} =−1 $ 时取等,故最大值就是 $4026$ 。

PS1、由这个解法可以看出变量下界是多余的;
PS2、这个解法只适用于变元个数为 $3k$  个,除非更改变量和的值或上界等。

66

Threads

415

Posts

3569

Credits

Credits
3569

Show all posts

Tesla35 Posted at 2014-6-20 21:38:22
原来那帖子里你也回过啊!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-6-20 21:50:15
回复 10# Tesla35
我都记不得了!                   [酷]

手机版Mobile version|Leisure Math Forum

2025-4-22 13:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list