Forgot password?
 Register account
View 1949|Reply 4

[数列] 请教:一道竞赛小题

[Copy link]

6

Threads

0

Posts

0

Reputation

Show all posts

wdjlhx Posted 2014-6-29 09:00 |Read mode
Last edited by hbghlyj 2025-5-6 21:35请教:若数列{an}满足a1>0,\[a_n=\frac{a_1+a_{n-1}}{1-a_1a_{n-1}} (n\ge 2)\]
且具有最小正周期2008,则a1=?(08安徽初赛第9题)

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing Posted 2014-6-30 17:54
递推式无法理解……

0

Threads

15

Posts

0

Reputation

Show all posts

LLLYSL Posted 2014-7-1 06:38
看到这个递推关系应该能够联想到
  1. $tan(α+β)=\tanα+tanβ/1-tanαtanβ$
Copy the Code

84

Threads

2336

Posts

4

Reputation

Show all posts

其妙 Posted 2014-7-1 22:47
典型的三角代换
青青子衿 Posted 2014-7-2 19:45
回复 1# wdjlhx
回复 1# 青青子衿
\[a_n=\frac{a_{n-1}+a_{n-2}}{1-a_{n-1}a_{n-2}}\]
有简单的通项公式吗??
青青子衿 发表于 2014-1-27 20:58
回复  其妙 唉
\[a_n=\frac{a_{n-1}+a_{n-2}}{1-a_{n-1}a_{n-2}}\]\[a_1=tan \theta_1\]\[a_2=tan \theta_2\]\[a_3=tan (\theta_1+\theta_2)=tan \theta_3\]\[a_4=tan (\theta_2+\theta_3)=tan \theta_4\]\[a_5=tan (\theta_3+\theta_4)=tan \theta_5\]\[……\]
\[\theta_1+\theta_2=\theta_3\]\[\theta_2+\theta_3=\theta_4\]\[\theta_3+\theta_4=\theta_5\]\[……\]
\[\theta_n=F_n\]
\[a_n=\tan(F_n)\] ...
青青子衿 发表于 2014-1-29 16:10
forum.php?mod=viewthread&tid=2329&ext … er=type&typeid=4

|Mobile version

2025-6-7 21:55 GMT+8

Powered by Discuz!

Processed in 0.012433 second(s), 20 queries

× Quick Reply To Top Edit