Forgot password?
 Register account
Author: keypress

[不等式] 【问】数列不等式一题

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-9-24 23:29
回复 18# realnumber


    不要在意。有好题好解法大家共享

2

Threads

8

Posts

59

Credits

Credits
59

Show all posts

 Author| keypress Posted 2013-9-26 08:49
两天没来,水漫金山了

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2016-5-23 16:13
5楼引理2的证明
引理2:  $a>0,b>0,M=max\{ a,1/a,b,1/b \},对任意非负实数w,x,y,z,w+x+y+z=4,若max\{ w,x\}+max\{ y,z \}\le 3$,则有$wa+x/a+yb+z/b\le 3M+1$.

证明:记$max\{ w,x\}=w' ,min\{w,x\}=x'$,$max\{ y,z\}=y' ,min\{y,z\}=z'$
a,1/a,b,1/b四数中,两个较大的不小于1,两个较小的不大于1.
那么$wa+x/a+yb+z/b \le w'M+y'M+x'+z'=M(w'+y')+(4-w'-y')=(M-1)(w'+y')+4\le 3(M-1)+4=3M+1$
完.

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit