Forgot password?
 Register account
View 2111|Reply 3

2014深二模第8题中的巴普斯-古尔丁定理

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2014-8-9 20:10 |Read mode
8.如图1,我们知道,圆环也可看作线段\(AB\)绕圆心\(O\)旋转一周所形成的平面图形,又圆环的面积\(S=\pi(R^2-r^2)=(R-r)×2\pi×\frac{R+r}{2}\)所以,圆环的面积等于是以线段\(AB=R-r\)为宽,以\(AB\)中点绕圆心\(O\)旋转一周所形成的圆的周长\(C=2\pi×\frac{R+r}{2}\)为长的矩形面积.请将上述想法拓展到空间,并解决下列问题:
若将平面区域\(M = \left\{ {(x,y)|{{(x - d)}^2} + {y^2} \leqslant {r^2}} \right\}\)(其中\(0<r<d\))绕\(y\)轴旋转一周,则所形成的旋转体的体积是 
Pappus–Guldinus theorem
Pappus's centroid theorem
en.wikipedia.org/wiki/Pappus's_centroid_theorem

2

Threads

57

Posts

388

Credits

Credits
388

Show all posts

caijinzhi Posted 2014-8-21 17:21
我记得物理学中可用这个求质心。
同济高等数学 官方 的辅导书里面 有 古鲁金 第二定理,也可以求质心(不过是积分的方法)。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-8-22 23:45
没图?

就没向下细看了

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-3-2 05:28

Mobile version|Discuz Math Forum

2025-6-5 07:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit