Forgot password?
 Register account
View 2415|Reply 2

[不等式] 来自某教师群的非常规条件求最小值

[Copy link]

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-8-19 01:21 |Read mode
Last edited by hbghlyj 2025-5-15 22:53
广雅杨(5257*****) 2014-8-18 23:22:02
设 $a$, $b$, $c>1$,且
\[\frac{b+c}{a^2-1}+\frac{c+a}{b^2-1}+\frac{a+b}{c^2-1}=1,\]
求下列代数式的最小值
\[\left( \frac{bc+1}{a^2-1} \right)^2+\left( \frac{ca+1}{b^2-1} \right)^2+\left( \frac{ab+1}{c^2-1} \right)^2.\]
这看着真有点吓人的,还好没被吓住,发现还能求个强点的。

解:记
\[f=\frac{bc+1}{a^2-1}+\frac{ca+1}{b^2-1}+\frac{ab+1}{c^2-1},\]
先求 $f$ 的最小值,由条件、柯西不等式及均值不等式,有
\begin{align*}
f^2-1&=\left( \sum\frac{bc+1}{a^2-1}-\sum\frac{b+c}{a^2-1} \right)\left( \sum\frac{bc+1}{a^2-1}+\sum\frac{b+c}{a^2-1} \right) \\
& =\left( \sum\frac{(b-1)(c-1)}{a^2-1} \right)\left( \sum\frac{(b+1)(c+1)}{a^2-1} \right) \\
& \geqslant \left( \sum\frac{\sqrt{(b^2-1)(c^2-1)}}{a^2-1} \right)^2 \\
& \geqslant 9,
\end{align*}
得到
\[f\geqslant \sqrt{10},\]
当 $a=b=c=3+\sqrt{10}$ 时取等号,即 $f$ 的最小值为 $\sqrt{10}$。

而对于原式则有
\[\left( \frac{bc+1}{a^2-1} \right)^2+\left( \frac{ca+1}{b^2-1} \right)^2+\left( \frac{ab+1}{c^2-1} \right)^2\geqslant \frac13f^2\geqslant\frac{10}3,\]
也是当 $a=b=c=3+\sqrt{10}$ 时取等,故原式的最小值为 $10/3$。

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

 Author| kuing Posted 2014-8-19 01:37
中间那里其实也不用柯西,直接均值就行了,反正都能约掉……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-8-20 17:37
回复 1# kuing

Mobile version|Discuz Math Forum

2025-6-7 03:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit