Forgot password
 Register account
View 2438|Reply 3

[数论] 是否错题?给个解答,不防看看——有点意思呢

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-8-25 23:01 |Read mode
Last edited by isee 2014-9-13 22:22题目:
已知$m,n$都是正整数,且$\dfrac{4m}{6m-3n}$是整数。
若$\dfrac{m}{n}$的最大值是$a$,最小值是$b$,则$a+b=$______。

此题结果真的确定的值?

Related collections:

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-8-27 23:50
细看思考后,个人觉得此题没问题,是一道“好”题,但网上流传的过程是有问题的。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-8-27 23:59
记$t=\dfrac mn>0$,将$\dfrac{4m}{6m-3n}\ne 0$变形为

\[\frac 4{6-\frac 3t}\in \mathrm{Z}\]

有\[\abs {\dfrac 4{6-\frac 3t}}\geqslant 1 \Rightarrow \dfrac 3{10}\leqslant t \leqslant \frac 32\]
从而\[a+b=\dfrac 95\]

具体为什么,就不细说了

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-13 22:23
应该算数论,给个解答,不防看看——有点意思呢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:51 GMT+8

Powered by Discuz!

Processed in 0.012636 seconds, 25 queries