Forgot password
 Register account
View 2632|Reply 13

[不等式] 证$\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{3n+1}<\frac 98$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-9-19 15:20 |Read mode
设$n$为自然数,求证\[\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{3n+1}<\frac 98.\]

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-9-19 15:55
又是这种,已经玩烂了。
直接求极限吧

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-9-19 16:14
可以参考这个:forum.php?mod=viewthread&tid=1736

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-19 20:41
回复 2# 爪机专用


    说明这种题的确是难度大

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-9-20 03:29
回复 4# isee


出烂了的题难度就不会大,早就有套路完爆它了
一眼看出极限为$ln(3)<\frac{9}{8}$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-20 09:55
回复 5# 战巡


    有没有具体的过程,我学习一下,,,谢谢

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-9-20 10:28
回复 6# isee


    $\displaystyle \int_1^{2n+1} \frac{1}{n+x} dx$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-20 11:47
回复 6# isee

根本没看3#链接……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-20 15:13
不使用牛莱公式和欧拉常数来证明

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-21 14:42
简单的不等式:设$n$为自然数,$n\geqslant2$,求证$\frac 1{n}+\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{n^2}>1$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2022-1-14 17:55
回复  isee

根本没看3#链接……
kuing 发表于 2014-9-20 11:47
哈哈哈,当年吧,直接给忽略了~

在 $\ln (x+1)<x$ 中分别令 $x=\frac 1{n}, x=-\frac 1{n}$ 有
$$\ln \frac {n+1}{n}<\frac 1{n}<\ln \frac {n}{n-1}.$$
于是
\begin{align*} \ln \frac {n+2}{n+1}&<\frac 1{n+1}<\ln \frac {n+1}{n}\\[1em]
\ln \frac {n+3}{n+2}&<\frac 1{n+2}<\ln \frac {n+2}{n+1}\\[1em]
&\cdots\qquad \qquad \cdots\\[1em]
\ln \frac {3n+2}{3n+1}&<\frac 1{n+2n+1}<\ln \frac {3n+1}{3n}
\end{align*}
这 $2n+1$ 个式子相加,便有
\begin{align*} \ln \frac {3n+2}{3n+1}&<\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{3n+1}<\ln \frac {3n+1}{n}, \end{align*}
由夹逼法则,知
$$\lim_{n \to \infty}\frac 1{n+1}+\frac 1{n+2}+\cdots+\frac 1{3n+1}=\ln 3.$$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2022-1-14 19:09
回复  isee


    $\displaystyle \int_1^{2n+1} \frac{1}{n+x} dx$
tommywong 发表于 2014-9-20 10:28
是指 和式 小于这个 积分式 吧?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2022-1-14 20:07
回复 5# 战巡

现在回头一看,结果就在5#


又一个源自知乎提问,好像是个高考题采用过的

: $\lim_{n \to \infty}\frac 1{4n+1}+\frac 1{4n+2}+\cdots+\frac 1{4n+n}.$

还可以利用 $\ln (x+1)<x$ 来写,高中生都可以看明白.

在 $\ln (x+1)<x$ 中分别令 $$x=\frac 1{4n},x=-\frac 1{4n}$$ 有

$$\ln \frac {4n+1}{4n}<\frac 1{4n}<\ln \frac {4n}{4n-1}.$$

于是

\begin{align*} \ln \frac {4n+2}{4n+1}&<\frac 1{4n+1}<\ln \frac {4n+1}{4n}\\[1em] \ln \frac {4n+3}{4n+2}&<\frac 1{4n+2}<\ln \frac {4n+2}{4n+1}\\[1em] &\cdots\qquad \qquad \cdots\\[1em] \ln \frac {5n+1}{4n+n}&<\frac 1{4n+n}<\ln \frac {5n}{5n-1} \end{align*}

这 $n$ 个式子相加,便有

\begin{align*} \ln \frac {5n+1}{4n+1}&<\frac 1{4n+1}+\frac 1{4n+2}+\cdots+\frac 1{4n+n}<\ln \frac 54, \end{align*}

由夹逼法则,知

$$\lim_{n \to \infty}\frac 1{4n+1}+\frac 1{4n+2}+\cdots+\frac 1{4n+n}=\ln \frac 54.$$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2022-1-14 20:08
主楼怎么转化为定积分呢,疑问中

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:12 GMT+8

Powered by Discuz!

Processed in 0.014791 seconds, 22 queries