Forgot password?
 Register account
View 2629|Reply 14

...成功被软件搞死

[Copy link]

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

╰☆ヾo.海x Posted 2014-11-10 10:28 |Read mode
Last edited by ╰☆ヾo.海x 2014-11-10 13:13 QQ20141110-2.gif

大写I也试过了,没用...

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-11-10 12:12
你既然想到可能要大写I,为什么也不试试其他也可能要大写?

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2014-11-10 12:15
Last edited by ╰☆ヾo.海x 2014-11-10 12:31回复 2# kuing


..得了,手算已算出=2pi*系数...
软件用命令一样没过程。。

不过话说还是觉得这类玩意不借住软件的话,人很快会变回猩猩。。。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-11-10 12:23
i 要写成 I
e 要写成 E
pi 要写成 Pi
括号要全用小括号,不能用中括号(表示函数)

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2014-11-10 12:32
Last edited by ╰☆ヾo.海x 2014-11-10 12:53回复 4# kuing


    好吧..试了下终于出结果了
但是给出的结果几乎没有指导意义。。。还给整出级数原型

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2014-11-12 22:05
闲着的话可以写一下你的过程

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2014-11-12 22:09
回复 6# 爪机专用

当时是泰勒级数暴力展开,算了整张A4...
事后发现可以换sin,几行就可以搞定...

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2014-11-12 22:12
回复 7# ╰☆ヾo.海x

既然只是几行,写写看呗,顺便可以试用一下草稿本[得意]

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2014-11-13 00:49
Last edited by ╰☆ヾo.海x 2014-11-13 07:08回复 8# 爪机专用

其实这个积分只是做题时的一步中间过程,那个展开含sin的级数的方法是我同学的,那天只扫了一眼没有细看,他写了不到一半A4纸啊..我一时想不到真是蠢死...先贴出我的繁琐解法算了,大家有简单的方法再说吧...

原题是这样的:

通过考虑 $ \int_{\left| z \right|=1} \left( z-\dfrac{1}{z} \right)^{2n}\dfrac{\rmd{z}}{z} $ 证明 $ \int _{0}^{2\pi}\sin^{2n}t\rmd{t} =2\pi\dfrac{1\cdot 3\cdot 5\cdots \left( 2n-1 \right)}{2\cdot 4\cdot 6\cdots \left( 2n \right)}$

Proof:
Since $ \left| z \right| =1$, we write $ z=e^{it}=\cos t+i\sin t $, then $\rmd{z}=ie^{it}\rmd{t}$, $ \frac{\rmd{z}}{z}=i\rmd{t} $ ,
and we have
\[ \sin t=\frac{z-\frac{1}{z}}{2i} \]
\[ \left( z-\frac{1}{z} \right)^{2n} =\left( 2i \right)^{2n}\sin^{2n}t\]
\begin{align*}
\int_{\left| z \right|=1} \left( z-\dfrac{1}{z} \right)^{2n}\dfrac{\rmd{z}}{z}& =i\int _{0}^{2\pi}\left( e^{it}-e^{-it} \right)^{2n} \rmd{t}\\
&=i\int _{0}^{2\pi}e^{2nti}\left( 1-e^{-2ti} \right)^{2n}\rmd{t}\\
&=i\int _{0}^{2\pi}e^{2nti}\left( 1-\binom{2n}{1} e^{-2ti}+\binom{2n}{2}\left( e^{-2ti} \right)^{2}-\binom{2n}{3}\left( e^{-2ti} \right)^{3}+\cdots \right)\rmd{t}\\
&=i\int _{0}^{2\pi}e^{2nti}\rmd{t}-i\int_{0}^{2\pi}\binom{2n}{1} e^{(2n-2)ti}\rmd{t}+i\int_{0}^{2\pi}\binom{2n}{2}( e^{(2n-2\cdot 2)ti} \rmd{t}\\
&-i\int _{0}^{2\pi}\binom{2n}{3}e^{(2n-2\cdot 3)ti}\rmd{t} +\cdots +\left( -1 \right)^{n}i\int_{0}^{2\pi}\binom{2n}{n}e^{(2n-2n)ti}\rmd{t}+\cdots
\end{align*}
Since $ i\int _{0}^{2\pi}e^{2nki}\rmd{k}=0$, where $n,k\ne0, k\in\Bbb{Z}$, the integrals above are all equal to 0 except for the $(n+1)$th term.

Thus,
\[ \int_{\left| z \right|=1} \left( z-\dfrac{1}{z} \right)^{2n}\dfrac{\rmd{z}}{z}=i\left(-1 \right)^{n}2\pi\binom{2n}{n}=\int _{0}^{2\pi}i\left(2i \right)^{2n}\sin^{2n}t\rmd{t}\]
\begin{align*}
\int _{0}^{2\pi}\sin^{2n}t\rmd{t}&=\dfrac{\left( -1 \right)^{n}2\pi\cdot 2n(2n-1)\cdots (n+1)}{\left( 2i \right)^{2n}n!}\\
&=\frac{2\pi\left( 2n \right)!}{2^{2n}\left( n! \right)^{2}}\\
&=2\pi\frac{\left( 2n \right)!}{\left(2^{n}\cdot n! \right)^2}\\
&=2\pi\frac{\left( 2n \right)!}{\left( 2\cdot 4\cdot 6\cdots \left( 2n \right) \right)^{2}}\\
&=2\pi\frac{1\cdot 3\cdot 5\cdots \left( 2n-1 \right)}{2\cdot 4\cdot 6\cdots \left( 2n \right)}
\end{align*}

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-11-13 00:50
[阿鲁捂眼表情] 高大上,看不懂ing……

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-11-13 00:53
回复 9# ╰☆ヾo.海x

代码写得还可以,点个赞!

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-11-13 09:30
回复 9# ╰☆ヾo.海x


这不是柯西积分公式瞬间秒的节奏么,我擦哪有这么暴力去积分的......
令$f(z)=(z^2-1)^{2n}$,由柯西积分公式可知
\[\int_{\abs{z}=1}(z-\frac{1}{z})^{2n}\frac{dz}{z}=\int_{\abs{z}=1}f(z)\frac{dz}{z^{2n+1}}=\frac{2\pi i}{(2n)!}f^{(2n)}(0)=\frac{2\pi i}{(2n)!}(2n)!C^n_{2n}(-1)^n\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-11-13 11:48
更加高大上了,只能 lu 过……
PS、暴力也没啥不好的,我就经常暴力

14

Threads

36

Posts

283

Credits

Credits
283

Show all posts

 Author| ╰☆ヾo.海x Posted 2014-11-14 15:29
回复 12# 战巡


好吧,昨天才教了柯西积分公式...原来你用了它的推论,确实强大..

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2015-1-23 23:52
回复  ╰☆ヾo.海x


这不是柯西积分公式瞬间秒的节奏么,我擦哪有这么暴力去积分的......
令$f(z)=(z^2-1 ...
战巡 发表于 2014-11-13 09:30
复变函数!

Mobile version|Discuz Math Forum

2025-6-4 17:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit